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ABSTRACT. A theoretical approach in computing the index of a Morse func-

tion at a critical point on a real non-singular hypersurface V is given. As a

consequence the Euler characteristic of V is computed. In the case where the

hypersurface is polynomial and compact, a procedure is given that finds a linear

function g, whose restriction glv, is a Morse function on V.
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1. INTRODUCTION.

Let f(Xl,... ,x,) be a real C function, and set

v {(,...,) e n"lf(,...,,,) 0}.

Suppose V is non-singular in R". Furthermore, let g(xl,. ,x,) be a real

function whose restriction gig, on V, is a Morse function. Then we vill fu’st

give a theoretical approach of how the Morse index of gig at a critical point

a can be computed. Using the above data, we can also compute the Euler

characteristic, x(V), of V.

Finally, in the case where f is a polynomial, we will say how we can obtain

a polynomial function g, whose restriction glv, has no degenerate critical points

on
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2. TIIE BASIC RESULT.

\e first recall some well known results from Morse Theory [3]. For A a

k x k real non-singular symmetric matrix, we denote by the index of A, (A),
the number of negative eigenvalues of A. Using the above definition, wc may

define the index of a Morse function at a critical point. Let # IV R bc a

real Morse function on a r-manifold W, and also let w E W be a critical point
of . For u,..., u local coordinates on W around w we can form the Hessian

matrix of # with respect to u,..., u,., H#(u), II#(u) o,,o,, ], 1 <_ , <_ r.

Although the Hessian matrix H#(u) depends on the particular coordintes u,
its index does not. We then define:

DEFINITION 1. The index of at the critical point w, i(w) i(H#(u)) for

some coordinates u around w.

Let us now fix some notation. Por R(z,...,z,) a real C function, we

OR OR j=l n.denote by R, 77,, 1,...,n, R, 0,0,,
Let a be a critical point of gig. Without loss of generality, we may assume

that f,,(a) O. Then using the Implicit Function Theorem we may "solve" the

equation f(x,... ,xn) 0 for x,, i.e. near a, V can be thought as the graph of

Xn Xn(Xl,...,Xn--1), and, therefore, x,... ,xn-1 are local coordinates for V

near a. If we differentiate the equation f(x,... ,x,) 0 twice, and evaluate at

a, ve get:

(I) o=f,.+f,.,,.x,,,+f,,:.x,,+f,m.x,.,,.x,.,,+f,.,.x,,, ,i,j l,...,n-1.

At a again ve have,

(II) g,=Af,, i=l,...,n, AER.

Now g[ v with respect to the coordinates x 1, Xn--1 becomes Q(x ,..., x,,_

g(xl,... ,x,_l,X,.,(x,..., x,,-1)). To compute thcrefore i(a), it is enough to cal-

culate the Hessian matrix HQ(xl,... ,x,-l), at a. We have

Q, g, + g,.,x,.,, and

Qo g,.i + g,’, x,.,, + g,, x,, + g,.,, x,., x,.,, + g,., x,,,

Substituting in III what x,,, is in and taking II into account, xve get

1
(h,i f h,.,ff, h,.,fif, + h,.,,f,f)(IV) Q,,

where h g Af, A is the constant in II, and 1

_
i,j

_
n- 1.

Ve computed the Hessian matrix gQ(xl,...,x,.,-1) (Q,) at a. But,

unfortunately, this matrix depends on the particular coordinates uscd at the

point a. Let us now give a coordinate free matrix whose index is related to i(a)
in a linear manner.

Let a,h,f be as before. Consider the following real (n + 1) x (n + 1)

symmetric matrix N, evaluated at a.
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0 vf)N= V’f H(h) whereH(h)=h,,, i,j=l,...,n

The following proposition is the main result in this paper.

PROPOSITION 1. For a,h,f,N as above, N is a non-singular matrix.

Furthermore, i(a) -i(g) 1.

The proof of Proposition 1 will be in stages. First we will state some

generalities and then come back to the proof.

For A a n x n real symmetric matrix we associate the real bilinear form

q(x,y) xtAy. We say that q is non-degenerate if (q(z,y) 0 Vy) => z 0.

This is equivalent in saying that A is an invertible matrix. Since A is symmetric

thcre exists an invertible matrix P such that PtAP is diagonal. Furthermore,

i(d) i(P’AP) [2].
Suppose A (aij),i,j 1,...,n is a real symmetric matrix. Let

v (v,..., v,) R so that v, - 0. Consider the following real symmetric

matrix B,
B= vt A

For e0, e,...,e, the usual basis of R’+, we have

< Be0,e0 > 0

< Beo, e, :> v,, 1,...,n

< Bei, e > aij, i,j 1,...,n,

where < > denotes dot product.

Now introduce a new basis e0,l,...,,-l,e, on R’+1 so that i
v,,e, v,e,,, 1,...,n- 1. With respect to those coordinates, the bilinear

form r(x, y) xtBy gets transformed to one whose matrix is ptBp, where P ia

the following matrix

1 0 0
0 v, 0

P 0 "’. 0 and PtBP becomes

vn 0
0 --V1, --tn_ 1

PtBP

O, 0,...,0, vn
0

F
0

where F (70) i,j 1,...,n

and 7ij v2na,. --VnV.ain-- v,v,.,a,.,. + v,v.a,,.,, i,j 1,... ,n-- 1. We then have:

LEMMA 1. Suppose F’ (7,j), i,j 1,...,n- 1, 7ij as above, is non-

singular. Then B is also non-singular and furthermore

i(B) i(r’) + .
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PROOF. ,Ve observe that det(PtBP) # 0, since v,, # 0, and therefore B is

non-singular. Let R be a real non-singular (n-1) x (n-1) matrix, so that RtF’R
is diagonal. Since F’ is non-singular, all of the diagonal elements of RtF’R are

non-zero. Let R’ be the following non-singular matrix

1, O, O)0 R
0

0, 0, 1

Now consider S R’t(ptBP)R’, S has the form

S

Let E, be the following (n + 1) x (n + 1) elementary matrix.

I 0, 0)E,= 0, -,’, 1

where - appears in the (i + 1) tt’ column for 1 n- 1. Observe that
"h

each Ei is invertible. Furthermore, a computation shows that Vl’-I E S.11;=1

n--1]-It=l E, has the following form

O, O, O, vn
0 "[1 0

S’= "- where b bn
0 ")’n-- 0
v, 0 0 b

n--I

=1%

On the other hand, i(S’) i(S). To complete the proof of the lemma it is

enough to show that

(v) i(S’) #{i’s[% < 0) + 1.

To achieve that we look at the det(S’- AI) A)(b A) ,,-1

rt--l(,i )) n--1H,’--I ("/i A)’(2-b-v) But the real roots of A -bA-vVn t=l
e extly wo, one positive and one negative. I

PROOF OF PROPOSITION 1. With the same notation and the same change

of coordinates, we take B to be N, then F becomes A.

And now Lemma 1 says

i(N) i(Q) + 1 i(a) + 1. |

To compute the index, i(N), of N we first look at the negative zeros of

D(z) det(U xI). To determine the number of negative zeros of D(z) we

can use the following argument: Let do 9.c.d(D,D’), dl 9.c.d(do, do),...,
and d, g.c.d(d,_a,d’,_l) 1,..., k, vith d constant where D’ -f,aO and
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d,+ dd._A 0, k- 1. Then we observe that
1 dx’

1
.D=

D do dl dk-----i=o’’"k - ,j=O k,d_ =D.
d do dl d d d

Furthermore, we note that each has simple roots and (negative roots of

D) =0 (negative roots of ). Finally we can use Sturm’s Theorem to

decide the number of negative zeros of each 8j [1].
If N happens to be nice, in the sense that no more than tvo consecu-

tive principal minors of N are singular, then i(N) variation of sign of the

determinants of its principal minors [1].
The computation of the Euler characteristic, x(V), of V does not require

the computation of the index of N, but rather the sign of its determinant. We
hv

x(V) (--1) ’(p)-
critical
of

But (-1)i() sign de(M)(p)=- sign de(N)(p).

Therefore, x(V)=- Ep sign det(N)(p).. A THEORETICAL

From now on suppose that f
is compact and non-singular in

Le {’RH, isline, 0). Then can be identified with

H- {0}. We have:

LEMMA 2. For almost all elements g of :, g[v is a Morse function on V.

PROOF. Let r/ V ,n-1 be the Gauss Map. Then from Sard’s Theorem

we get that the set of critical values of r/has measure zero in S"-. For t E ,
g[y is not a Morse function on V if and only if is a critical value of 71 [4]. |

DEFINITION. For f(xl,...,xn) a real polynomial of degree d,d _> 1, the

bordered Hessian, BH(f), of f is the following (n +:1) x (n + 1) real symmetric

matrix

( 0 Vf ) where H(f)is the Hessian matrix ofBH(f)= Vtf H(f) f"

Let now a (al,... ,a,,) E N" {0}, and consider the linear function g(z) =<
a,x >. Let L t[v, and p a critical point of L. We may suppose f,.,(p) 7 O.

Then if h =/- Af, where gi Af,, 1,..., n. p is a non-degenerate critical

point of L if and only if the following matrix N is non-singular

N=
V’f H(h) V’f-AH(f) [4].

Since ETg a, and therefore A # 0, Lemma 2 implies the following:
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COROLLARY 2. For a, g, L as above, L is a Morse function on " if asd only

if does not belong to the image of the set A (det BH(f) 0) N V ,ruder

the Gauss map r/.
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