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ABSTRACT. The Hausdorff dimension of a set in R is usually defined by considering countable coverings of

the set by general intervals. In this note we establish sufficient conditions under which coverings whose members

are restricted to a particular family g of intervals will produce the same value for dimension. A result of Bil-

lingsley is then employed to obtain a general technique for computing the dimensions of sets defined by certain

types of generalized expansions. A specific example is included.
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1. INTRODUCrION.

Let s_>0. The s-outer Hausdorff measure of a set E C_ R is usually defined by

H"(E lim inf d (lj)o

d (tj)_<

where lj is an interval in R and d (lj) denotes the diameter of lj. It is easy to see that the value of

H(E is unchanged when the coverings of E are restricted to lacing closed intervals. (It will be convenient

for us to consider only closed intervals in Section 2.) It is well known that there exists a unique point s0 such

that H(E )= for s<s and H(E )= 0 for s>s0. This value s is called the Hausdorff

dimension of E (denoted by dim(E )).

In actually computing the dimension of a set it is rcquently useful to be able to consider only coverings

from a restricted family of intervals. In [1] Besicovitch established that coverings by dyadic intervals (i.e. inter-

vals of the form [j 2 (j + 1)2 )) produce the same dimension for sets. Billingsley [2] extended this result to

r-adic intervals where r _>2 is some positive integer. However in [3] Billingsley remarked that he knew of no
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general conditions on interval families which would guarantee preservation of the correct dimension value for all

sets. We address this problem in Section 2.

2. COVERING RESULTS.

Let F C_ R be a closed interval. A collection g of intervals is a Vitali coveting of F if for each

e>0 and each x eF there exists ! eg such that x d and d (I)<e. If an interval collection g is a Vitali

coveting of F then, for each E C_ F, we can define Hs"(E and dim (E) by

and dim (E) sup{a Hs’(E oo inf{a [Hs(E 0} where usual Hausdorff dimension dim(E
results when g is taken to be the collection of all closed intervals. We automatically have dim(E )<dims (E)
for any Vitali coveting g so to demonstrate equality we need only show dim (E)<dim(E ). A property of

dimension which will be useful in this is the result dim (UEt)= sup dims (EL) for any countable collection

{EL

We will call g a bounded Vitali coveting of F if, for each x eF, there exists a sequence of intervals

from g (which we will denote by {lj (x)}j such that

(i) x dj (x) for each j

(ii) d(l(x))0
d (t +(x ))

b (x)>o.(iii) i d (I (x))

We will say that a bounded Vitali covering of F is open if, for each x eF, the sequence {lj (x)}j can be

chosen so that x d(x for each j (where lj(x denotes the interior of I (x)).

Theorem 2.1 deals with open bounded Vitali coverings.

THEOREM 2.1. Let g be an open bounded Vitali coveting of a closed interval F C_R. Then

dims (E) dim(E for all E C_ F.

PROOF. Let E C F. Then we can write

E=U uEi,
=2 =1

where E ,m {x eEI inf
d (I +l(x ))
d (I (x))

>_ 1/i and d (I t(x )) >_ 1/m }. To prove the theorem it is sufficient to

show dims(Ei _< dim(Ei). Let O<6<l/m be arbitrary and suppose {Ft}t is a countable coveting of

Ei by closed intervals with d (Ft)--<6 for each k. Without loss of generality we can assume Fk C F and

Ft flEi , # 6. For each k we will show that there exist four intervals from g which cover Ft t’lE , and

whose diameters do not exceed d(Ft). For every x eFtflEi,at there exists l(t)(x such that

d (lj (k )(x ))>d (Ft)>d (lj(t)+t(x)). Writing Ft [at ,bt then we must have [at ,x ]_C/j(t)(x or

Ix ,bt ]_C/j()(x ). Without loss of generality we will assume there exists at least one x eFt t’lE, .at for which

[a ,x ]_C./()(x since the argument is analogous when beginning with the assumption [x ,bt ]_C/ ()(x). Let

Xo sup{x eft f’lEi,at [at ,x ]_C./j (t)(x)}. Now xoFt _CF and so there exists k’ such that

d(lt,(Xo))<_i d(F). Let x6-_<Xo be some point in FtClEi, such that [at.xo-]_C/(t)(x0-) and

I ()(x 6- )lql ,(x o) # 6. This is possible from the definition of x and the assumption x odt (x o). If x >x

implies x Ft f3E, : then I (t)(x 0- )ult ,(x0) covers Fi NE, ,at. If however there exists x >x such that
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x F tqE, then it follows that [x ,bt ICIj (t)(x and we define x inf{x Ft NEi x ,bt ICIj (t)(x )).
We can then find x + _>x with x + Ft NE, and k" such that [x + ,bt ]_CIj (t)(x + ),
d (It ,,(x 1))_<i d (Ft) and Ij (t)(x + )rqlt ,,(x 1) # - Then

rt fqei ,,. c_ lj (t)(x 6- )ult ,(x 0)ult ,,(x 1)UI (t)(x + ). Now
d (b ()(x o- )) d (6 ()( o- )) d (, ()(x: ))

d (F --< d (lj(t)+l(x0- )) <- and similarly
d (F

_< i. Thus we obtain

[d (I(t)(x0- ))0 + d (lt ,(x0)) + d (It,,(x 1)) + d (I(t)(x + ))] _< 4io d (F )0.
--1 =1

Hence we conclude

inI d (I)o < 4i inf ’ d (F)0., _e, _1 e,, -! g F dteal

d(t) d (F

ng 0+ we obtain Hs(Ei 4iH(E, , ). s sho dim (Ei dim(E, , as required d

complet the prf of the theorem.

more general u is the follong theorem in wch the n ruirement is reled. We 11 1 a

und Vitali coveting of F complete if for each x F the uence {I (x)} n chen so that when-

ever x is an endint of ly (x) (if at all) there ests I g th d (I)d (I (x)) and >0 such that

(i) (x- 1 if x is the left hand endint of 1 (x) (t n the le nd endint of F

(ii) (x +) I if x is the fitd endnt of 1i (x) (but not the fight hand endint of F ).

O2.2. t F a cl inte of R and g a mplete und Vitali coveting of F. en
dims(E)=dim(E) forl E F.
PROF. effoHo tt of corem 2.1 until diuion of x is rch.

d endint of I ,(x 0) then no mfifion is rr. However if x is c left hd endint of I ,(x 0)
we n to add in the inteal I profided by (i) in the deflation of a complete coveting. We then sclt

x that ly ()(x )I . eaomififion must done in the se of x if x is e
fit d endint of l(,)(x ). uently F OEi, n covered by six inteals g, none of

wheteex d (F,). m

ehth ol eorem 2.2 are fis by a de clam o coverings wch includ the r-ac inter-

vals but is much more emeive. the next fion we ider a tque lot aing the dimeion ol r-

rain ts.

3. COMPUTING DIMENSION.

In [2], [3], and [4] Billingsley developed a technique for computing the dimensions of sets defined in terms

og (t, ())
of r-adic expansions by considering limits of the form n-.oolim log X(l. (x))

where - is a (suitably chosen) dif-

fuse probability distribution on the Borel sets of [0,1], X represents Lebesgue measure, and I (x) is the r-

adic interval of length r containing x. This technique for "r-adic sets" arose out of results of Billingsley [2,

4] concerning the dimensions of certain sets obtained from discrete-time stochastic processes. We will show that

these same results, along with Theorem 2.2, can be used to develop the analogous technique for computing

dimensions of sets determined by more generalized expansions.
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We begin by reviewing the nry definitions and results from [2] and [4]. Let 11,1_ be a stochastic

process on a probability space (X ,r,#) taking values in a countable, possibly finite, set S. A subset of X of

the form c(il,i2 in)= {xCX ill(x)= il,I2(x)= i2 In(x)= in}, where i1,i2 in are

members of S, is called an n-cylinder. Assume that each "oo-cylinder" has #-measure zero i.e.

#({xX II1(x)=il, I2(x)=i2 })=0 for each sequence il,i2 Let E be a subset of X. For

each 0<a<1 define

L(E)= lira inf la(ci)
._.o tlq_DE

(c, )<

where each c is an n-cylinder (for some n ). With methods similar to those used in the case of a-outer

Hausdorff measure it can be shown that L is an outer measure on the subsets of X and for each E _CX

there exists a unique point a0, 0!:_a0_<l, such that L (E) oo for a<a0 while L (E) 0 for a>ao.
The number a0 is called the /-dimension of E and denoted by dim,(E ). This value generally depends on

#, E, and the underlying stochastic process I t, 12 (since the cylinders are determined by the process). It is

not difficult to show that #(E )>0 implies dim,(E 1 and this fact will prove very useful. We will also need

the following result.

THEOREM 3.1. (Billingsley): Let (X ,’,#) and 11,12 be as defined above and, for each x X, let

cn (x) denote the n -cylinder containing x. That is,

cn (x) {x ’X [I t(x ’) 1 l(x In (x ’) In (x)}. Let be another probability distribution on (X
which assigns measure zero to each oo -cylinder. If

{x log-(cn(x)) }E C_ CX ,,-lim log/(c,, (x))
0 (3.1)

then dim,(E 0 din(E ). []

Billingsley’s idea was to compute the /-dimension of E by constructing some measure . for which

/(E )>0 and (3.1) holds, thereby obtaining dim(E 0. He showed how this technique could be used to cal-

culate the usual Hausdorff dimension of certain subsets of [0,1] by identifying each point with its r-adic expan-

sion (r chosen suitably), the sequence of r-adic digits comprising the stochastic process and an n -cylinder

corresponding to an r-adic interval of length r-. Since coverings by r-adic intervals produce usual Hausdorff

dimension, Theorem 3.1 can be applied with suitable - and Lebesgue measure. We now extend this tech-

nique to generalized expansions.

A generalized expansion of a number in [0,1] will be defined as follows. For each n 1,2 let

kn >_2 be an integer and choose values 0<an,l< <an ._1<1, setting an,0 0 and an,k, 1. The initial

proportions a 1, a 1.- determine a division of [0,1] into the disjoint intervals [a , ,a

0,1 kl-2, and [311_1,1]. We will indicate that a point x in [0,1] falls into the interval

(i 0,1 k 1-1) by the notation 1 l(x i. 1 l(x will be the first term in the expansion of x (with

respect to the choices an ). At the second stage each interval {x [I l(x )=i is divided into k disjoint subin-

tervals determined by the given proportions 32,1 32,k2_I. This splits [0,1] into k lk disjoint intervals

which are most conveniently expressed in the form {x ll(X )=i, 12(x)=j} for some choice of

=0,1 k1-1 and j =0,1 k2-1. Letting dn,, =an,+l-an, for each n and i, we can

alternately write {x I (x )=i, I2(x )=j {x a 1.i + a 2, d , <_ x < a ,i + a =,y +ld 1,, (but including the

fight hand endpoint if k 1-1 and j k 2-1). 12(x will be the second term in the expansion of x.

Each interval {x I l(x )=i ,/2(x )=j is then divided according to the proportions a a.1 a a,k-l- Con-

tinuing this subdivision process, the n th stage produces a splitting of [0,1] into k lk kn disjoint intervals
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{x I l(x )=i 1, 12(x )=i In (X)=i,,

{X a 1,, -F a 2,t d 1,, --F a 3,t d 2,, d 1,a -I" d- tin ’n dn --l,t, d 1,,

<_ x < a ,i + a 2., d 1. -F d- an ,i. +dn -t.,. d .i }.

e uen 1 l(x ), 12(x is the generalized exmion of x, tng valu in the ctable t

S {0,1 k.-l[n 1,2 }. If r2 is a ifive integer and k. r, a..i =i/r for each n,then

the result is the usual r-adic exmion of x. (If x has more than one r-adic exmion ts meth pr

duc the teinating one.)

We ll using coverings com of inteals lonng to the lltion g of n ylindem

c (i i. )= {x [I (x )=i I. (x)=i. generat by the generalized exnsiom. (Note that me

n ylindem may emp; ts curs if some i S {0,1 k-1}.) order that g a compete

und Vitali coveting of [0,1] we nd to make the resmicfion:

e diameters of the (nonemp) n ylindems at a contrled rate. If c. (x) is the n ylinder containg

the int x then

d (q +(. ))
i. d (c. (x)) =i. d. +d. +,(x) b (x )>0. (3.2)

It is osy to tt (3.2) implies the diameter of ch n ylinders to zero n and forc S to

a fite t.

We nowed to the mn result.

OM3.2. t I t(x ), 12(x reprint the generiz exmion of x [0,1] th rt to a choi

ofo a.,i, 1 k.-1, n 1,2 d su the rdtinginte collation g of n-

cyHnde fisfi (3.2). t defin over the n yHnde by the relafiom:

(c (i ,i i. )) p. (i ,i i. (3.3)

where . (i i, )1, p. (i i. 0 if one or more i k,

p. (i i. _,i p. _(i i._) (comistency condition), p (i 1, and

lim p.(i i.) 0.

en een uquely to a diff bilisfi on the rel m B of [0,1], d if

E C /x,[0,1] Hm
logp.(ll(X)J2(x) l.(x)) =0 (3.4)

then m(E 0 dim(E ). (E )>0 then dim(E 0.

PROF. s H follow from eorem 3.1 and eorem 2.2. It is clr om the cucfi of the n-

cylinde (d rcfion (3.2)) that the n ylinde (n 1,2 generate the rei ts of [0,1] d that

(3.3) defin a diffu bili msure that een uniquely to e rel sets. Regarding the generzed

exion I ,12 as a sthasfic the bilis ([0,1],B,X), (X sgue meure) and

noting tt (c. (x)) p. (ll(X)2(x I. (x)) wle x(. (x)) a,t=)ac= a..c=), it follo

bom rem 3.1 that if E fisfies the hths of eorem 3.2 then dimx(E )= dim(E ). Now

dimx(E d (E are defin by vedngs bom the n ylinde generat by the pr Id d

rcfi (3.2) emur the n yHnde fo a :ete und Vitali vefing of [0,1]. From eorem 2.2

we cclude dimx(E dim(E and the result follo, o



648 C.D. CUTLER

Theorem 3.2 can frequently be applied to Cantor sets built from generalized expmions. We say C is a

generalized Cantor set if it can be expressed in the form C {x (1 t(x ),/2(x S" where S" is some

subset of the countable product ,,Xt{0,1. k,,-1}. The simplest case occurs when S" ,,X-tS" where

S,, _C {0,1 k,,-1} is the set of "allowable" digits at the n th stage. The resulting Cantor set is called

"independent" and can be written as C {x II,, (x)S,, for all n }. The usual Cantor set (minus a countable

collection of "endpoints" corresponding to some numbers with more than one triadic expansion) is an example,

resulting when k,, 3, a,,.i i/3, and S, (0,2} for all n. We have the following corollary.

COROLLARY 3.2. Let C be a generalized independent Cantor set built from generalized expansions whose

n -cylinders satisfy (3.2). Let s, denote the size of the set of allowable digits S,, at the nt stage. Suppose

there exists d, such that d,,.i d,, for each eS,,. If the limit

log (s s s )-t
lira

log dtd d.
exists and equals 0 (3.5)

then dim(C 0.

PROOF. We apply Theorem 3.2 with C in the role of E and - defined by

(ss2 s)-t if iS for all j
7(c,, (i i. )) 0 otherwise.

7 corresponds to choosing uniformly and independently among the allowable digits at each stage, t

We apply Theorem 3.2 to compute the Hausdorff dimension of a certain generalized "Markov" Cantor set

(i.e. a Cantor set in which the allowable digits at the n th stage depend on the digit chosen at the (n-1)’
stage). While techniques exist in the literature for calculating the dimemion of self-similar sets (see [5], [6], [7])
by obtaining the so-called "similarity dimension", the following set is only self-similar in a limiting sense. (It can
be partitioned as a countably infinite union of similitudes.) For each n take k 5, and for n even set

d,o=dn=dn,=ct and dn,t=dn,a=a (where a>O, a>O satisfy 3a+2a 1) while for n odd set

d,,,t=d,3=# and d,0=d,2=d,4=b (where >0, b>O satisfy 2+3b 1.) We set St={1,3},

allowing only "1" or "3" to be selected at the first stage. Letting S, (i) denote the allowable digits at the n m

stage given that "i" is selected at the (n-l)th stage, we use the rules S(O)= {1), S(1) {0,2},

S,, (2) {1,3}, S (3) {2,4}, and Sn (4) {3}. (These rules correspond to the permissible moves in a random

walk on {0,1,2,3,4} with reflecting barriers at 0 and 4.) We will show the resulting Cantor set

C {x II (x )S and 1 (x)Sn (In_t(x)) for each n has dimension log 1/3 / log aB. Construct a Mar-

kov probability rule on the n -cylinders according to the initial distribution p t(1) p t(3) 1/2 and transition

probabilities p(ll0)=l, p(011)=l/3, p(211)=2/3, p(l12)=p(312)=l/2, p(213)=2/3,
p (413) 1/3, p (314) 1, and p (i J 0 otherwise. (This gives p 2(i ,J P t(i )p (j and, induc-

tively, p (i i p,,_(i i,_Dp (4, i,,-D .) The resulting distribution ./ is clearly supported on

the set C. Furthermore it is sufficient to compute the limit in (3.4) over odd integers and we obtain, for any

xC,

lim
log p2 +(I t(x I2 +(x ))

lim 1o 2-t3
log dldl(X) d2n+t,z,+t(x log a/3+t

and hence dim(C log 1/3 / log a# as claimed.
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