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ABSTRACT. The Hausdorff dimension of a set in R is usually defined by considering countable coverings of
the set by general intervals. In this note we establish sufficient conditions under which coverings whose members
are restricted to a particular family g of intervals will produce the same value for dimension. A result of Bil-
lingsley is then employed to obtain a general technique for computing the dimensions of sets defined by certain
types of generalized expansions. A specific example is included.
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1. INTRODUCTION.
Let o>0. The o-outer Hausdorff measure of a set E C R is usually defined by

H%E) = 6]11'1(1)* l}J;}n& jZ‘:ld ay
4(1,)<s

where I, is an interval in R and d(I;) denotes the diameter of /;. It is easy to see that the value of
H*(E) is unchanged when the coverings of E are restricted to being closed intervals. (It will be convenient
for us to consider only closed intervals in Section 2.) It is well known that there exists a unique point &g such
that Ho(E ) = oo for a<og and H*(E) = 0 for a>aq. This value o is called the Hausdorff
dimension of E (denoted by dim(E )).

In actually computing the dimension of a set it is frequently useful to be able to consider only coverings
from a restricted family of intervals. In [1] Besicovitch established that coverings by dyadic intervals (i.e. inter-
vals of the form [j2™", (j +1)27™")) produce the same dimension for sets. Billingsley [2] extended this result to

r -adic intervals where r >2 is some positive integer. However in [3] Billingsley remarked that he knew of no
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general conditions on interval families which would guarantee preservation of the correct dimension value for all

sets. We address this problem in Section 2.

2. COVERING RESULTS.

Let F CR be a closed interval. A collection g of intervals is a Vitali covering of F if for each
e>0 and each x¢F there exists Ieg such that xe/ and d (I )<e. If an interval collection g is a Vitali
covering of F then, for each E C F, we can define H,%(E) and dim, (E) by
3d{)”

H(E) = lim
5 J=t

inf
—0* Ul 2E
J
’1 173
a(,)<s
and dim, (E) = sup{a |H,*(E ) = oo} = inf{a | H,%(E) = 0} where usual Hausdorff dimension dim(E )
results when g is taken to be the collection of all closed intervals. We automatically have dim(E )<dim, (E)
for any Vitali covering g so to demonstrate equality we need only show dim, (E )<dim(E ). A property of
dimension which will be useful in this is the result dim, (LiE,) = sup dim, (E; ) for any countable collection

{Ek Ji -
We will call ¢ a bounded Vitali covering of F if, for each x eF , there exists a sequence of intervals
from g (which we will denote by {/; (x)};) such that

(i) =xelj(x) foreach j
(i) d;(x)40

oo d U)o
(iii) u}f WTIRAE AN b (x )>0.

We will say that a bounded Vitali covering of F is open if, for each xeF, the sequence {/,(x)}, can be
chosen so that x ef,%x) for each j (where /;°x) denotes the interior of 7; (x )).

Theorem 2.1 deals with open bounded Vitali coverings.
THEOREM 2.1. Let g be an open bounded Vitali covering of a closed interval F CR. Then
dim, (E) = dim(E) forall E CF.
PROOF. Let E C F. Then we can write

E-= l'L-JZ mLil EI’"’
d(I;
where E; , = {x¢E | inf % >1/i and d(I,(x)) >1/m}. To prove the theorem it is sufficient to
J J

show dim, (E; ,, ) < dim(E; ,, ). Let 0<6<1/m be arbitrary and suppose {F;}, is a countable covering of
E; ,, by closed intervals with d (F; )<6 for each k. Without loss of generality we can assume Fy CF and
FyNE; 5 # . For each k we will show that there exist four intervals from g which cover FyNE; , and
whose diameters do not exceed i d(Fy). For every xecFynE;, there exists [;;)(x) such that
d(I;ay(x))>d (Fe )>d (Ijgya(x ). Writing Fy = [a; b] then we must have [ap x]Cljq)(x) or
[x b ]Clj)(x ). Without loss of generality we will assume there exists at least one x ¢FyNE, , for which
[a: x JCI;y(x) since the argument is analogous when beginning with the assumption [x ,b; JCI;)(x ). Let
xg=sup(x Fy NE; o | [0 X ]JCLiy(x)}. Now xeeFyCF and so there exists k' such that
d (I (x0))<i d(F;). Let x5 <xo be some point in FyNE;, such that [a xq ]CI,4)(xg") and
I;&y(xg NIy (xo) = 3. This is possible from the definition of xo and the assumption xoel% (xg). I x>xg
implies x &F; NE, ,, then I;q)(xg )Uli-(xo) covers FynE,,, . If however there exists x>xq such that
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x eFyNE, , then it follows that [x b JCI;4)(x) and we define x; = inf{x eFy NE; » | [x by JCI, e y(x )}-
We can then find x;*>x; with x*eFnE , and k' such that [x{" b ]I, )(x1H),
d (I (x1))<i d(Fy) and Ly NIy (x 1) # . Then
FyNEj m C1igy(xa YUl (x Ul (x )UI, ¢ y(x " ). Now

d(jxyxg ) d(l,u)xg)) d,uyx1")) . .
dE) = darale ) aF) <! Thusweobain

< i and similarly

fjlld ()6 )" + d U (x))* + d (e (k) + d (U g y(x )] < 4i °§ld F).
Hence we conclude

inf Sd()< 4i° inf S3d(F,)e.

LJJI,QE.,. j=1 Uy Em =1
l,cg F, closed interval
d(,)<i6 d(F))<s

Letting 6 — 0* we obtain Hy%(E; ,, ) < 4i°H°(E, ,, ). This shows dim, (E; ,, ) < dim(E, ,, ) as required and
completes the proof of the theorem. O

Of more general use is the following theorem in which the open requirement is relaxed. We will call a
bounded Vitali covering of F complete if for each x ¢F the sequence {I,(x)}; can be chosen so that when-
ever x is an endpoint of /;(x) (if at all) there exists /eg with d (I )<d (I,(x)) and ¢>0 such that

(i) (x—ex)C1I if x is the left hand endpoint of 7, (x) (but not the left hand endpoint of F )
(i) (x,x+e) C7I if x is the right hand endpoint of /;(x) (but not the right hand endpoint of F).

THEOREM 2.2. Let F be a closed interval of R and g a complete bounded Vitali covering of F. Then
dim, (E) = dim(E) forall E CF.
PROOF. The proof follows that of Theorem 2.1 until discussion of xg is reached. If xgef,? (xo) or is the right
hand endpoint of [, :(xo) then no modification is required. However if x is the left hand endpoint of 7, /(xg)
we need to add in the interval I provided by (i) in the definition of a complete covering. We then select
xg <xg sothat I;;4)(xg" )N/ # (¥. The analogous modification must be done in the case of x, if x; is the
right hand endpoint of I,)(x;). Consequently FyNE; , can be covered by six intervals from g, none of
whose diameters exceed i d (F;). O

The hypotheses of Theorem 2.2 are satisfied by a wide class of coverings which includes the r -adic inter-
vals but is much more extensive. In the next section we consider a technique for obtaining the dimension of cer-

tain sets.

3. COMPUTING DIMENSION.

In [2], [3], and [4] Billingsley developed a technique for computing the dimensions of sets defined in terms
. . P A . log 7(’:: (x )) . . .
of r-adic expansions by considering limits of the form lim ——-———+ where ~ is a (suitably chosen) dif-
n —oo log X(1, (x))
fuse probability distribution on the Borel sets of [0,1], » represents Lebesgue measure, and 7, (x) is the r-
adic interval of length r—™ containing x . This technique for “r -adic sets” arose out of results of Billingsley [2,
4] concerning the dimensions of certain sets obtained from discrete-time stochastic processes. We will show that
these same results, along with Theorem 2.2, can be used to develop the analogous technique for computing

dimensions of sets determined by more generalized expansions.
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We begin by reviewing the necessary definitions and results from [2] and [4]. Let Iy,/,,... be a stochastic
process on a probability space (X ,F,u) taking values in a countable, possibly finite, set S . A subset of X of

the form c(iy,iq ..., i) ={xeX [Iy(x) =i, o(x)=1is ..., I, (x)=i,}, where iyis ...,i, are
members of S, is called an n-cylinder. Assume that each ‘“oco-cylinder” has u-measure zero i.e.
p({xeX |I1(x) =i, I5(x)=1is, ...}) =0 for each sequence i,,ij... . Let E be a subset of X. For

each 0<a<1 define
A(FY) = : 'nf )
Ly (E) = lm ol 3 uter)
(e, )<é

where each ¢; is an n -cylinder (for some n). With methods similar to those used in the case of a-outer
Hausdorff measure it can be shown that L, is an outer measure on the subsets of X and for each E CX
there exists a unique point a9, 0<og<1, such that L (E) = oo for a<eg while L(E) =0 for e>aq.
The number o is called the y-dimension of E and denoted by dim,(E). This value generally depends on
u, E, and the underlying stochastic process 7, I,,... (since the cylinders are determined by the process). It is
not difficult to show that u(E )>0 implies dim,(E) =1 and this fact will prove very useful. We will also need
the following result.

THEOREM 3.1. (Billingsley): Let (X ,Fu) and I, ..., be as defined above and, for each xeX, let
ca(x) denote the n -cylinder containing x. That is,
c(x)={x'eX |I4(x")=1yx),...,I,(x")=I,(x)}). Let 4 be another probability distribution on (X ,7)

which assigns measure zero to each oo -cylinder. If

. log 1(ca (x))
E C [X X Inll_n.lwm =40 } 3.1

then dim,(E) = 6 dim(E). O

Billingsley’s idea was to compute the p-dimension of E by constructing some measure v for which
4(E )>0 and (3.1) holds, thereby obtaining dim,(E ) = ¢. He showed how this technique could be used to cal-
culate the usual Hausdorff dimension of certain subsets of [0,1] by identifying each point with its r-adic expan-
sion (r chosen suitably), the sequence of r -adic digits comprising the stochastic process and an n -cylinder
corresponding to an r -adic interval of length r ™ . Since coverings by r -adic intervals produce usual Hausdorff
dimension, Theorem 3.1 can be applied with suitable v and p = Lebesgue measure. We now extend this tech-
nique to generalized expansions.

A generalized expansion of a number in [0,1] will be defined as follows. For each n =1.2,... let
ky>2 be an integer and choose values 0<a, ;< - - - <@, 4 <1, setting a, o= 0 and a,, = 1. The initial
proportions  ayy, ..., @14, determine a division of [0,1] into the disjoint intervals [a;,a1,41),
i=01,...,k~2, and [al*‘_,,l]. We will indicate that a point x in [0,1] falls into the i interval
(i =0,1,...,k;—1) by the notation Iy(x)=i. I4(x) will be the first term in the expansion of x (with
respect to the choices a,,). At the second stage each interval {x |7;(x)=i} is divided into k, disjoint subin-
tervals determined by the given proportions @3y, . . ., 24,1 This splits [0,1] into kk, disjoint intervals
which are most conveniently expressed in the form {x |I,(x)=i, I (x)=j} for some choice of
i=01...,k~1 and j =0,1,...,ky-1. Letting d,, =a,;41—a,,; for each n and i, we can
alternately write {x |7{(x)=i,I5(x)=j} = {x |ay; + a5,d1, <x <ay; +azjndy,} (butincluding the
right hand endpoint if i = ky—1 and j = k,—1). [I(x) will be the second term in the expansion of x.
Each interval {x |I;(x)=i J5(x)=j} is then divided according to the proportions as;, ..., a3s,1. Con-

tinuing this subdivision process, the n™ stage produces a splitting of [0,1] into kqk; - - - k, disjoint intervals
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(x |11 )=iy, In(x)=ip, ... I (x)=in}
= (x 'al.l + aj, dl,l +aj, d2,1 dl,l + 0 +a,, dll—l,l U dl,l
1 2 1 3 2 1 n n—1 1
<x <ay +agdiy + 0+ aday, o dy )

The sequence [74(x), I,(x),... is the generalized expansion of x, taking values in the countable set
S ={0.1,..., ky—1|n =12,.}. If r>2 is a positive integer and k, =r, a,; =i /r foreach n,then

the result is the usual r-adic expansion of x. (If x has more than one r -adic expansion this method pro-
duces the terminating one.)

We will be using coverings composed of intervals belonging to the collection g of n-cylinders
c(iy ..., i) ={x |I(x)=iy, ..., I, (x)=i,} generated by the generalized expansions. (Note that some
n -cylinders may be empty; this occurs if some i, ¢S\ {0,1, ..., k,—1}.) In order that g be a complete
bounded Vitali covering of [0,1] we need to make the restriction:

The diameters of the (nonempty) n -cylinders shrink at a controlled rate. If ¢, (x) is the n -cylinder containing
the point x then

A (Cpx))
)

It is easy to see that (3.2) implies the diameter of each n -cylinder shrinks to zero as n — oo and forces S to

=":-f d, +10, (x) = b (x )>0. (32)

be a finite set.
We now proceed to the main result.
THEOREM 3.2. Let I,(x), I5(x),... represent the generalized expansion of x ¢[0,1] with respect to a choice

of proportions a,;, i =1,...,k,—1, n =12,.. and suppose the resulting interval collection g of n-
cylinders satisfies (3.2). Let v be defined over the n -cylinders by the relations:

We(iniz o0 in)) =Paliviz ..., in) (33)
where 0<p, (iy. ..., )<1, p,(iy, ..., i) =0 if one or more i, >k, ,
k-1 k-1
zg)op,, Gy ..., in_15i) = pp_givs - . ., i,_1) (consistency condition), Y p.(i) =1, and
1 1 =0

Em py (i ..., in)=0.

Then ~ extends uniquely to a diffuse probability distribution on the Borel sets 8 of [0,1], and if

B e bedon | tim BRI, bG) 54
n—oo logdyy ydarye) das o)

then dim(E) = 6 dim(E ). If v(E)>0 then dim(E) = 4.

PROOF. This will follow from Theorem 3.1 and Theorem 2.2. It is clear from the construction of the n-
cylinders (and restriction (3.2)) that the n -cylinders (n = 1,2,...) generate the Borel sets of [0,1] and that
(3.3) defines a diffuse probability measure ~ that extends uniquely to the Borel sets. Regarding the generalized
expansion Iq,l,,... as a stochastic process on the probability space ([0,1],8,)), (\ = Lebesgue measure) and
noting that ~y(c, (x)) = ps (I 1(x )JJ2(x ), . . ., I, (x)) while Mcn(x)) =d 1y () d20,6) " " G x)e it follows
from Theorem 3.1 that if E satisfies the hypotheses of Theorem 3.2 then dimy(E) = 6 dim(E). Now
dim,(E) and dim(E) are defined by coverings from the n -cylinders generated by the process /1,/,..., and
restriction (3.2) ensures the # -cylinders form a complete bounded Vitali covering of [0,1]. From Theorem 2.2

we conclude dim,(E ) = dim(E ) and the result follows. O
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Theorem 3.2 can frequently be applied to Cantor sets built from generalized expansions. We say C is a
generalized Cantor set if it can be expressed in the form C = {x | (I 1(x ),/5(x),...) ¢ S*} where S° issome

subset of the countable product Xl{O,l, ..., k,—1}. The simplest case occurs when §° = X1S" where
nw= n o=

S, C{0,1,...,k,—1} is the set of “allowable” digits at the n™ stage. The resulting Cantor set is called
“independent” and can be written as C = {x |I,(x)eS, for all n}. The usual Cantor set (minus a countable
collection of “endpoints” corresponding to some numbers with more than one triadic expansion) is an example,
resulting when k, =3, a,; =i/3,and S, = {0,2} forall n. We have the following corollary.
COROLLARY 3.2. Let C be a generalized independent Cantor set built from generalized expansions whose
n -cylinders satisfy (3.2). Let s, denote the size of the set of allowable digits S, atthe n™ stage. Suppose
there exists d, suchthat d,; =d, foreach icS,. If the limit

i JoB (s - s )t
n — o lOgdldz d,,

exists and equals ¢ 3.5)

then dim(C ) =9¢.
PROOF. We apply Theorem 3.2 with C inthe role of £ and ~ defined by

{(slsz st if ijeS; forall j
0

Yealiy, - - in)) = otherwise.

v corresponds to choosing uniformly and independently among the allowable digits at each stage. O

We apply Theorem 3.2 to compute the Hausdorff dimension of a certain generalized ‘““Markov” Cantor set
(i.e. a Cantor set in which the allowable digits at the n' stage depend on the digit chosen at the (n —1)%
stage). While techniques exist in the literature for calculating the dimension of self-similar sets (see [5], [6], [7])
by obtaining the so-called “similarity dimension”, the following set is only self-similar in a limiting sense. (It can
be partitioned as a countably infinite union of similitudes.) For each n take &, =5, and for n even set
dyog=dyp=dy4=0a and d,;=d,3=a (where a>0, a>0 satisfy 3a+2a = 1) while for n odd set
dyy=d,3=p and d,g=d,,=d, 4=b (where >0, b>0 satisfy 28+3b = 1.) We set §; = {1,3},
allowing only “1” or “3” to be selected at the first stage. Letting S, (i) denote the allowable digits at the n®
stage given that “i” is selected at the (n-1)* stage, we use the rules S, (0)= {1}, S,(1)={0,2},
S, (2) = {1,3}, S.(3) = {2,4}, and S, (4) = {3}. (These rules correspond to the permissible moves in a random
walk on {0,1,2,3,4} with reflecting barriers at 0 and 4.) We will show the resulting Cantor set
C = {x |Iy(x)eSy and I, (x)eS, (I, _1(x)) for each n} has dimension log 1/3 / log a8. Construct a Mar-
kov probability rule on the n -cylinders according to the initial distribution p;(1) = p;(3) = 1/2 and transition
probabilities p(1/0)=1, p(0|1)=1/3, pQ2ID=2/3, p1|)=pB|)=1/2 p(2]3)=2/73
p@13)=1/3, p(3|4) =1,and p(i | j) = 0 otherwise. (This gives p,(i,j) = p:(i)p (j |i) and, induc-
tively, po(iy - - .0 in) = Poaits - - -, in_1)P (in |in—1).) The resulting distribution ~ is clearly supported on
the set C. Furthermore it is sufficient to compute the limit in (3.4) over odd integers and we obtain, for any
xeC,

g passilfa(x), - - - Toan(x)) . log 2713

lim = lim
n—cwo 10gdis ) 0 damsig, ) - logat gt

and hence dim(C) = log 1/3 / log a8 as claimed.
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