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ABSTRACT. This paper deals with a correspondence between the periodic distributions

and holomorphlc functions. Periodic distributions whose "negative" Fourier

coefficients are zero are characterlsed as the boundary values of certain holomorphlc

functions.
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1. INTRODUCTION

UnLet f(z) be a holomorphlc function in c Cn where U is the unit disc of the

complex plane C. Let the power series expansion of f be given by

f(z) r-akzk (1.1)

Where k (kl,k2, ... kn) is a multl-index of non-negatlve integers z*n and
k kl 2 kz z z n and z (Zl,Z2,...,z) Un. We will denote by B the set of all

n n
holomorphic functions given by (1) satisfying the following inequality.

for some non-negative integers M and p. This set will also be called the set of

Bieberbach functions. It may be noted that in case n I, the class B includes a

variety of functions that are geometrically interesting. For example certain classes

of finitely valent functions [2], the class of star-llke or convex functions [3], or

more generally univalent functions [4]. The name is also suggestive in this

context. In this paper we investigate the geometric significance of the inequality

(1.2) and thus establish a correspondence between elements of B and certain type of

periodic distributions, i.e. distributions on Tn where T is the unit circle in C.

This investigation enables us to obtain the coefficients a
k

in (1.2) as the Fourier

coefficients of the corresponding distribution just as the coefficients of a

H
2

function on U in one variable are identified with the Fourier coefficients of its

radial limit function [Theorem 17.10, p. 366 of [6]].

Our main result is the complete description of the distribution and the
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holomorphic function involved in this correspondence.

2. MAIN RESULT

Here we quickly recall the basic facts about the space of test functions on

Tn and its dual namely the space of periodic distributions and their Fourier

coefficients as outlined in Exercise 22 on page 190 of [5].

Tn ((eiXl eiX2 ixn): x
e i real} (2.1)

Functions # on Tn R
n

can be identified with functions # on that are 2- periodic

in each variable by setting

ix
#(xl,x2 .... xn) (eiXl, eiX2,. .le n (2.2)

Let Zn be the set of n-tuples of integers, z*n be the set of n-tuples of non-

Tnnegative integers For k E Z n the function e
k

is defined on by

ek(eiXl, eiX2, eiXn) eik’x exp [i(kIx + k2x2+ + knXn)] (2.3)

If o is the Haar measure on Tn then the Fourier coefficients of are given by
n

(k) e_k do
n

(k Zn Ll(on)) (2.4)
Tn

TnD(Tn) is the space of all functions on such that C (Rn). If D(Tn)
then

/ 1 12) ...)
kZ

n

This family of semlnorms defined a Frechet topology on D(Tn) which coincides with the

space given by the seE[norms

x sup (D) (x) (N 0,I,2...) (2.6)

D(Tn) is the space of all continuous linear functlonals on D(Tn) also called the

space of periodic distributions. The Fourier coefficients of any u E D(Tn) are given

by

(k) u(e_k) (k Zn) (2.7)

To each u e D"(Tn) there exists N and Q such that

lg(k)l q(l+Ikl )N (k E Zn) (2.8)

ZnConversely if g is a complex function on such that

Ig(k) Q(I+ Ikl )N (2.9)
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for some Q and N, then g for some u e D’(Tn). There is thus a linear one-to-one

correspondence between the periodic distributions on the one hand and functions of

Z npolynomial growth on on the other.

From the above theory it is clear that any f e B given by (I.I) and satisfying

(1.2) gives raise to a periodic distribution f- v whose Fourier coefficients satisfy

a
k

keZ
v(k) (2.10)

0 otherwise

On the other hand any periodic distribution v satisfies

by virtue of (2.8) and so if only (k) 0 for k e zn-z*n the power series.

k
g(z) (k) z (2.12)

U
n

will represent a holomorphic function in as we shall see later and hence

V =v. Let G denote the class of all periodic distributions v such that
g

(k) 0 if k e zn-z*n.

Consider the equality Vf= v (f B, v e G). The following theorem gives a complete

description of either v or f if the other is given.

THEOREM. Let f B be given. Then Vf- v is completely given by

v(#) Limt I fCrx) #(x) dg Cx)
n

r+l Tn

for any # e D (Tn), and in particular for a fixed z (zl, z2"’’Zn Un

(2.13)

n -1 (2.14)v ( (xi- z i) f(z), x (Xl, x
2 ....Xn Tn

Conversely if v e G then the function f given by (2.14) is holomorphlc in U
n

belongs

to B and satisfies (2.13) so that f- v holds.

PROOF. Let f be given. By definition v f is the distribution given by

(2.10). Since any distribution is uniquely determined by its Fourier coefficients

(See the last parts of Exercise 22 on page 190 of [5]) all we have to prove is that

the following functional u on D(Tn) is linear, continuous and has the Fourier

coefficients given by (2.10), with u replacing v.

u(@) Limt n f(rx) #(x) dUn(X).
r+l T

First we will show that for a fixed e D(Tn)

(2.15)

I f (rx)#(x) d u (x)
n

Tn

(2.16)
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has a limit as r I- To see this we use the power series expansion (I.I) and

rewrite (2.16) as

dO dO
L n n n

(2. 7)akr Ikl f exp[i(Olkl+O2k2+...+O k )] (e
iO et.O) 1...._. n

k Z*
i
n Z)

n

where I-- [-7, 7]. The term by term integration is justified by the holomorphic

nature of f in U
n

which implies the local uniform convergence. The series in (2.17)

is the same as

Now consider the power series

(2.18)

. b Am
m

m=o

(2.19)

in one complex variable where

b
m

. a
k
(-k)

kZ,n
(2.20)

If the series (2.19) were absolutely convergent for Ill < I, then this series at

r is the same as (2.18). Further if (2.19) were convergent at then by

Abel’s limit theorem of one complex variable [I, p.42] this series will converge to

I b as the series (2.19) will have a radius of convergence greater than or
O m
equal to one and hence will be absolutely convergent for Ill < I. Thus for our

purposes it is sufficient to prove that (2.19) converges at I.

We know that

keZ,n
M (N o,1,2,...).

Thus if [k m and N > 0 integer, then

I (-k) M1 (I + [kl 2) -N/2 (2.21)

Using (2.21) and (1.2) in (2.20)

Ibml c1mP(m + l)n(l + m2)-N/2 (2.22)

since the number of k Z *n with [k m is atmost (m + I) n. But an estimate of the

form (2.22) forces E lb to be convergent if N is sufficiently large. Hence our
m

claim is established.

Thus u is a well defined map from D (Tn) to C. Clearly u is linear. We contend

that u is in fact continuous and hence a periodic distribution. For this it suffices

to show that if

#m 0 in D(Tn) as m (2.23)
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then

u (era) 0 in C as m (2.24)

Now (2.23) implies that for N positive integer

Dx m 0 (2.25)

uniformly in Rn for all multl-lndlces a with lal N as m o. By our construction

u(m) -kz,nak ;m(-k). (2.26)

m(-k) n ekm don (2.27)

If k g Z*n and a is a multi-lndex then

kaSm(-k)--f e
k kC,mdOn A f e

k Dam (A- constant) (2.28)

using integrations by part and the periodicity of era" (2.25) and (2.28) now assures

us that

(2.29)

Using suitable multl-indices a in (2.24) we can also get that for any N positive

integer

(2.30)

But if N is large enough to ensure. (I + Ikl 2) -N<
kZ*n

then (2.30) can also lead us to conclude that

keZ*n (l+lk12)N

goes to zero as m . Hence

lu(*)l2 I a
k m(-k) 12 ’ J a

k
(I + Ikl 2

, Y. 1%12( + Ikl 2) -[ ( + Ik12)l $,(-k)l 2

On the right side te first sum can be made finite using (1.2) and choosing a large M.

Further if M is sufficiently large the second sum goes to zero as m -and so

u(0 0 as m , completing the proof.
m

Now we proceed to calculate the Fourier coefficients of this distribution u.

Let m g Z n.
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But

(m) u(e_m) " a
k (e_m) (-k).

kZ,n
(2.31)

o if kern
(e (-k) neke_m d-m T n

if k= m
(2.32)

(2.31) and (2.32) show that (2.10) holds for this u. Hence u f and so by

uniqueness

u=f.

A repeated application of Cauchy integral fornmla gives

n -Ifn f(rx) H (x I- z i) dOn(X) f(rz)
T ill

(2.33)

for z (zl, 22, ..#zn) and r < since f(rz) is analytic in the polydisc,

U
n n

Now (2.33) implies (2.14).

Next we come to the converse. Let v G be given. Consider the series

k
g(z) [. v(k) z

kEZ,n

If zi U for i 1,2 n we choose r such that Izil < r < for all i. Then

(2.34)

An application of Cauchy’s root test ensures us that the series (2.34) is convergent

in Un and hence g(z) represents a holomorphlc function there. By the fact that v is a

periodic distribution v satisfies (2.11)and so g B. Now consider ,
g

By the definition (k) (k) for all k Z n and so
g- v. (2.35)

g

Now applying the first part for this g B we get (2.13) nd (2.14) with f replaced by

g. But f is defined by (2.14) and so

f g (2.36)

Hence (2.13)holds for his f and also f v by (2.35) and (2.36).

NOTE. This theorem implies that f v, f E B, v e G holds if and only if(2.13) and (2.14) hold. If n I, B is actually an algebra under the Hadamard productand the map f Uf is an algebra isomorphism between B and G where in G the productis the convolution.
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Let n I. If we consider v s G and assume v as a map is one-to-one from

{(x-z)-I / z g U} D(T) C, then the map f given by (2.14) is also univalent in U

and hence by Bieberbach conjecture we have

[(n)[ n[ (I) (n 1,2,...)

and this is stronger than the "a priori" estimate[v(n) l= O(nk) for k > O.

Hence the Fourier coefficients of certain distributions belonging to G also satisfy

the Bieberbach conjecture.

In this context it is interesting to ask the following question. Can we

characterize the set of all f when f varies over the class of univalent functions or

starlike functions or convex functions or functions with positive real part in the

unit disc using properties of the associated distributions f?

ACKNOWLEDGEMENT. This work is partially supported by a Career Award from the UGC

India.

REFERENCES

I. AHLFORS, L.V. Complex Analysis, Mcgraw Hill (1986).

2. HAYMAN, W.K. Multlvalent Functions, Cambridge University Press (1976).

3. POMMERENKE, C. Univalent Functions., Vandenhoeck and Ruprecht Gottlngen (1975).

4. DE BRANGES, L. A proof of the Bieberbach conjecture. (Preprlnt).

5. RUDIN, W. Functional Analysis, Mcgraw Hill Inc. (1973).

6. RUDIN, W. Real and complex Analysis_, Mcgraw Hill Inc. (1974).


