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ABSTRACT. Consequences of the existence of conformal vector fields in (locally)

symmetric and conformal symmetric spaces, have been obtained. An attempt has

been made for a physical interpretation of the consequences in the framework of

general relativity.
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I. INTRODUCTION.

Let M denote a semi-Riemannian manifold with metric tensor gab of

arbitrary signature. All the geometric objects defined on M are assumed

sufficiently smooth. Although our treatment is local, nevertheless we shall

drop the term "locally’, for example in "locally symmetric’. We denote the

Christoffel symbols by rabc and the covariant differentiation by a semi-

colon We say that M is symmetric in Caftan’ s sense if the Riemann
a a O. We saycurvature tensor Rcd is covariant constant, i.e. Rcd; e

that M is conformal sysmetric [1] if its Weyl conforsml curvature tensor

Ca Ca O. Thus a symmetric space isbcd is covariant constant, i.e. bcd;e
conformal symmetric but the converse is not necessarily true.

A vector field on M is said to be conformal if

L gab 2 gab (I.I)

where L( denotes the Lie-derivative operator via and denotes a scalar

function on M. In particular, if -- 0, is called a Killing vector field and if

is a non-zero constant, is called a homothetic vector field. It is known that a

conformal vector field satisfies:

L Cabcd 0 i. 2)

Equation 1.1 implies

c c + c gCdLt tab a ;b #b ;a gab ;d (1.3)

but the converse is not necessarily true. However, we know [2] that {1.3) is
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equivalent to

L gab 2 gab + hab (1.4)

where hab is a covariant constant tensor field. A vector field

satisfying (1.3) or (1.4) is said to be affine conformal [2] and is said to

generate a one-parameter group of conformal collineations [3,4]. An affine

conformal vector field with constant (i. e. L rabc 0) is known as an

affine Killing vector field (which preserves the geodesics). For (i) a compact

orientable positive definite Riemannian manifold without boundary, {ii) an irreducible

positive definite Riemannian manifold and (iii) an n(n Y 2) dimensional non-flat

space-form; an affine conformal vector field reduces to conformal vector field. For a

non-Einstein conformally flat space of dimension Y 2; Levine and Katzin [5] proved

that hab is a linear combination of gab and the Ricci tensor Rab.
Conformal motion (generated by a conformal vector field) is a natural symmetry

of the space-time manifolds in general relativity, inherited by its

causality-preserving [6] character. But sometimes, it is desirable to consider

conformal motions which provide covariant conservation law generators. It was

pointed out by Katzin et al [7] that there is a fundamental symmetry called

curvature collineation (CC) defined by a vector field satisfying

L Rabcd 0 I. 5)

Komar’s identities [8] (which define a conservation law generator) follow naturally by

the existence of CC. A conformal vector which also generate CC, is called a

special conformal vector. A conformal vector is special conformal vector iff

0 (l.S)

The purpose of this paper is to study the consequences of the existence of (i) a

special conformal vector field in a symmetric space and (ii) a conformal vector field

in a conformal symmetric space; and indicate the physical interpretation of the

consequences within the framework of general relativity.

2. SYMMETRIC AND CONFORMAL SYMMETRIC SPACES.

Here we prove two theorems as follows:

THEOREM I. Let a non-flat symmetric space M of dimension n 4, admit a

special conformal vector field . Then either (i) M has zero scalar curvature and

grad is a null F’llinE vector field, or (ii) reduces to a homothetic vector field.

(Note that the above theorem is valid also for an affine conformal vector field,

in which case the alternative conclusion (ii) would be: reduces to an affine

Killing vector field. The proof is common).

PROOF. We have the following identity [9]:

b f f RbL(Rbcde;a (L( Rbcde);a (L@ raf)R cde (L rac) fde

(Lr
f b

(L
f Rbad)R cfe rae cdf

By our hypothesis the left hand side vanishes and consequently, in view of (1.3) the

above equation assumes the form:
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Rfcde Rb b Rbb f +
a a cde Racde c ade

Rb ub Rb+ r rf + O’d__ +
a cde gac fde car a cde

Rbcfe rf Rbcda Rbcde Rb f
gad + +

e a gas cdf

(2.1)

where a stands for ;a. Taking the product of both sides with ca yields

(Ca ,a)Rbcde 0

As per our hypothesis, M is not flat and therefore the above equation shows

( G 0

which implies that either (i) grad is null (a non-zero vector of zero norm), or (ii)

is constant. We first take up case (i). Successive contractions of (2.1) lead to

af R (2 2)(n 4)f e e

Two subcases arise: If n = 4, then (2.2) gives R = 0. If n > 4, then using the

condition (1.6) obtains Rfe f = 0. This, substituted in (2.2), shows that R = 0.

Thus, in case (i) grad is null and Killing (in virtue of (1.6)) and the scalar

curvature R vanishes identically. In case (ii) t is homothetic or affine Killing

according as t is conformal or affine conformal. This proves the theorem.

THEOREM 2. Let a conformal symmetric space M (dim M > 3) admit a conformal

vector field . Then one of the following holds:.

(i) M is conformally flat

(ii) grad is a null vector

(iii) t reduces to a homothetic vector field.

In particular, if were non-homothetic special conforms/ vector field and M were

not conformally flat, then grad would have been null and Killing to

PROOF. Consider the identity [9]:

b f CbLt(Cbcde; a) -(Lt Cbcde);a (Lt raf)Cfcde -(Lt rac) fde

f rf b
(L rad)Cbcfe (Lt ae)c cdf

Observe that the left hand side vanishes because M is conformal symmetric and

(1.2) holds for a conformal vector field. By use of (1.3) in the above equation and

contracting at a and b we obtain (noting dim M > 3)

a b
o’ o" C =0a cde

Therefore we conclude that either (i) Cbcde = 0 meaning M is conformally flat,

or ws Oa 0 so that (ii) oa is a null vector or (iii) is constant. Thus we have

proved that one of the following is true: (i) M is conformally flat, (ii) grad is a
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null vector, (iii) is homothetic. In particular, if were non-homothetic special

conformal vector field and M not conformally flat then, of course, (ii) holds.

Moreover, in this case grad would be Killing in virtue of the condition (1.6) for

special conformal vector field. This completes the proof.

RMARK 1. The conclusion (i) of Theorem 2 can be highlighted by saying that,

if a conformal symmetric space M admits a one-parameter group of conformal

motions (such that grad is neither null nor zero) then M is conformally flat.

This can be compared with the standard result:" If an n-dimensional semi-Riemannian

M admits a maximal, i.e. 1/2(n+l)(n+2) parameter group of conformalmanifold

motions, then M is conformally flat.

RE]&%RK 2. The conclusion {i) of Theorem 1 can be interpreted in the context of

general relativity as follows. Let M be the space-time manifold of general

relativity and satisfy the hypothesis of Theorem 1. M with zero scalar curvature,

is a space-time carrying pure radiation [10] (e.g. massless scalar fields, neutrino

fields or high frequency gravitational waves) and Einstein-Maxwell field. M with

the gradient of conformal scalar field as a null Killing field, has a Killing horizon

[11] defined by the null hypersurfaces of transitivity, -- constant.
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