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ABSTRACT. The purpose of this paper is to establlsh some new properties of set valued

measurable functions and of their sets of Integrable selectors and to use them to

study convex integral functlonals defined on Lebesgue-Bochner spaces. In this process

we also obtain a characterization of separable dual Banach spaces using multlfunctlons

and we present some generalizations of the classical "bang-bang" principle to infinite

dimensional linear control systems with time dependent control constraints.
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1. INTRODUCTION.

In the last decade the study of measurable set valued functions has been

developed extensively, both in the theoretlcal direction and the direction of

applications. Many mathematicians have contributed significant results in this area,

which combines challenging theoretical problems with important applications in a

variety of fields, like optimization theory, optimal control, statistics and

mathematical economics. In all those areas the systematic use of multtfuncttons has

allowed people to make significant progress and solve many problems.

With a series of recent papers [18] / [25] the author has started an effort to

extend the general theory of Banach space valued multifunctions and the closely

related theory of multimeasures. The present paper continues this effort and provides

some applications of the theoretical results obtained.

Briefly this paper is organized as follows. In the next section we establish our

notation and for the convenience of the reader we recall some basic definitions and
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facts from the general theory of mmltlfunctions and the theory of measurable

integrands. In section 3 we have gathered some results, in which starting from

properties of the set of integrable selectors of a mmltifunction we extract

information about its pointwise properties, the structure of its conditional

expectation and the properties of the underlying Banach space. Some other related

observations of functional analytic nature are also included. In section 4, we

proceed to a detailed study of the properties of the set of integrable selectors of a

multifunction and we present an application to control theory ("bang-bang" type

results). Finally in section 5, we use the results obtained earlier in order to study

convex integral functionals that appear often in problems of optimization, optimal

control and mathematical economics. With this combination of theoretical and applied

results, we want to emphasize the importance and the versatility of the theory of

multifunctions and attract the interest of mathematicians from different areas.

2. PRELIMINARIES.

Let (, Z) be a measurable space and X a separable Banach space. Throughout

this work we will be using the following notations:

Pf(c) A C X: nonempty, closed, (convex)}

P(w)k(c)(X) A C X: nonempty, (w-) compact, (convex)}

Also we will be using the following additional three pieces of notation. Let

Ae2X’{}. By IAI we will denote the norm of A i.e., IAI sup. II all’ by

o(.,A) the support function of A i.e., o(x ,A) sup (x ,a), x eX and by d(.,A) the

A multifunction F: Pf(X) is said to be measurable if for every xeX, the

function m d(x,F(m))is measurable. This definition is equivalent to saying that

there exist f X measurable functions s.t. for every
n

F() --cl {f ()} ("Castaing’s representation"-see Castaing- Valadier [5]).
n nl

A function f: X s.t. f(m)eF(m) is said to be a selector of F(.). The

problem of existence of measurable selectors is central in the theory of

multifunctions. In applications the most widely used selection theorem, is the

following one which was first proved by Aumann [I] for Polish spaces and was later

extended to Souslin spaces by Saint-Beuve [30]. By Z we will denote the universal

a-field corresponding to Z.

THEOREM 2.1 [30]. If X is a Souslin space and F:+2X’{} is a multifunction

s.t. GrF={(m,x) e xX:xeF(m)} ZxB(X), where B(X) is the Borel o-field of X,

then there exist f X, Z-measurable selectors of F(.) s.t. F() c cl{f ()}
n n nl

for all
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REMARKS. a) If (l,r-,t) is a u-flnlte complete measure space, then r. Z

b) Recall that a Souslln space is always separable, but it need be metrlzable (for

example a separable Banach space with the weak topology), c) If F(.) is closed valued

and measurable in the sense defined earlier then GrF r.xB(X) (graph measurablity).

The converse is true if r r. (i.e.r. is complete).

if( e :f() e F()Let (fl,E,) be a u-flnlte measure space and

-a,e},

Using S
F we can define a set valued integral for F(.) by

F()d() { f()d():feSIF }. We say that F:1 Pf(X) is integrably bounded

if it is measurable and iF(m) eL+I. Using theorem 2.1 we can see that if F(.)

is Integrably bounded then SF and fF are both nonempty.

be nonempty. We say that K is decomposable (also known as "convexLet X C_ Lx
with respect to switching") if for all Aer. and all (fl’ f2 e KxK, XAfl+XACf2 e X.

’In [9], theorem 3.1., Hiai-Umegakl proved that if K is closed and decomposable, then

Furthermore if K is bounded, thenthere exists F: + Pf(X) measurable s.t. K SF-
F(.) is integrably bounded. Using this fact, tllai-Umegakl [9], went on and defined as

set valued condltlonal expectation for F(.) as follows. Let Zo be a

Definesub-u-fleld of r. let F: Pf(X) be measurable with SF

K- cl {Er’f:fSIF}. Then K is r. -decomposable and so there exists
o

r.
E F:&I Pf(X) Z -measurable s t K

o SEZOF. The multlfunctlon E OF(.) is the

set valued condltlonal expectation of F(.).

Next let (,ZIN) be a complete, u-flnlte measure space and X a separable Banach

space. Let f:OxX / RU {+}, f+. Following Rockafellar [28] we say that f(.,.) is

a normal Integrand if the followlng conditions are satisfied:

i) (re,x) f(,x) is ZxB(X) -measurable

if) for all meO, x / f(m,x) is lower semlcontlnuous
(l.s.c)

Using the celebrated "Von Neumann projection theorem" (see Castalng Valadler

[5], theorem Ill 23) we can show that the above two conditions are equivalent to the

followlng. Recall that if g:X RU{+(R)} then eplg

i’) the multifunctlon + epif(,.) is graph measurable

ii’) for all R, eplf(,.) Pf(XxR)

Note that ii’) immediately implies that eplf(m,.) is measurable. Because of

condition i) a normal integrand f(.,.) is superpositlonally measurable i.e. if

x:R X is measurable, then f(,x(m)) is measurable. A well known example of

normal integrands are the Caratheodory integrands. A normal Integrand f(. ,.) is said
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to be convex, if for all , f(m,.) is convex.

EX.Let us also recall some notions from convex analysis. Let f We define

f(x) {x*X* (x*,y-x) f(y)-f(x) for all yeX}. This is called the

subdlfferential of f(.) at x. Also we define f,X* by f* (x* )=sup {(x* ,x)-f(x) xeX}

and this is known as the conjugate of f(.). The conjugate and the subdlfferentlal are

related by the Young-Fenchel equality, namely: x*f(x) if and only if f* (x* )+f(x)

(x*,x). Since we are dealing here with extended real valued functions we define the

effective domain of f to be: domf {xeX:f(x)<}.

Finally, recall that X has the weak Randon-Nikodym property (WRNP) if it has the

Radon-Nikodym property for the Pettis integral.

3. MEASURABLE MULTIFUNCTIONS.

We start with a result in which, knowing the structure of the set of integrable

selectors of a multifunctlon, we deduce some polntwise properties of the

multlfunction. Another such result was obtained by the author in [25] (theorem 5.1).

Assume that (H,Z,) is a complete, o-finite measure space and X a weakly

sequentially complete, separable Banach space.

THEOREM 3.1. If X* has the WRNP and SF nonempty, bounded, closed and convex.

then F(m)gPwkc(X) l-a.e.

PROOF. From Hiai-Umegaki [9] (theorem 3.2) we know that F(.) is Integrably

bounded and so for all mH’N,(N)--0, F(m) is bounded.

Suppose that for some e’N,F() is not w-compact. Then the Eberleln-Smulian

theorem and the fact that X is w-sequentially complete give us a sequence

{x with no Cauchy subsequence. Recalling that {Xn} n)l
is bounded, we can

n n)l

Iapply the result of Rosenthal [29] and deduce that Ix is an -sequence. Hence
n n)l

I_+ X a contradiction to the fact that X* has the WRNP (see Musial-Ryll

Na rdzewski 17 ).

REMARK. If X* has the RNP, then the result is immediate, since X is reflexive (see

Diestel -Uhl [7], corollary II, p. 198). But we know that in general the WRNP does

not imply the RNP.

In fact, when X is a Banach lattice we can have a partial converse of the above

theorem. So assume that (H,r.,) is a complete, o-finite measure space and X a

separable Banach lattice.

is nonempty convex and w-THEOREM 3.2. If the following implication holds: "SF
compact > F()Pwkc(X) -a.e.",then X* is separable and w-sequentially complete.

PROOF. We will show that i X. Suppose not. Then from our hypothesis if

LSF C (H) is nonempty convex and w-compact then F(m)ePwkc(1) u-a.e. Set M(A)
I

{/ f(m)d(m): feSIF }, Aer.. Then M(.) is a Pwkc(I) -valued multimeasure with a
A
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Pwkc(I) -valued density, a contradiction to example 2 of Coste [6]. So gl X and

then from a result of Lotz (see Diestel-Uhl [7], p.95) we deduce that X has the

RNP. Since X is separable from corollary 8, p.98 of Diestel-Uhl [7], we deduce that

X* is separable. Also c X* and so theorem I, c.4 of IXndenstrauss Tzafrlrl
o

[16] tells us that X* is w-sequentlally complete. .
Also we have a weak compactness result for the set of integrable selectors of a

multlfunctlon. Another such result can be found in [25]. But first we will need a

property of decomposable subsets of , which was proved by the author in [26]

(Proposition 5.1 see also Diestel-Uhl [7], Theorem 4, p. I04). For the convenience

of the reader we recall the result here. Let (,E,) be a o-flnlte measure space

and X a Banach space.

is nonempty decomposable and bounded then K isPROPOSITION 3.1 [26]. l__f K C_ LX
uniformly Integrabl e.

Now assume that in addition X is weakly sequentially complete.

THEOREM 3.3. lf K C_ LX is nonempty, decomposable, bounded and w-closed, with no

1-sequence then K is w-compact.

PROOF. From Proposition 4.1 we know that K is uniformly Integrable. Also since X

is weakly sequentially complete, so is (see Talagrand [31]). Combining these

facts with Corollary 8 of Bourgain [4] and the Eberlein-Smulian theorem we get that K

is w-compact. Q.E.D.
where F:R Pf(X) is integrablyREMARK. If X is separable then K SF

bounded. So indeed our result is a w-compactness result for the set of integrable

selectors of a mmltlfunctlon.

4. PROPERTIES OF THE SET OF INTEGRABLE SELECTORS.

This section is devoted to a detailed study of the properties of the set of

integrable selectors of measurable (or graph measurable) multlfunctlons. Those

results are then applied to the analysis of a family of infinite dimensional llnear

control systema with time dependent control constraints. "The material of this section

will also be used in the next section, in the study of convex integral functlonals.

We will start with an auxilliary result that we will need in what follows and

which also generallzes Theorem 1.5 of Hlai-Umegakl [9].

Assume that (,Z,N) is a complete, o-flnlte measure space and X a separable

Banach space.

Sthen c0nv S
F cony F

LEMMA A. lf F: ’{4} is graph measurable and S
F

C S Suppose that the inclusion is strict soPROOF. Clearly cony SF cony F

From the strong separation theorem therewe can flnd fSI----- s.t. f nv S
Fconv F

exists u(.) e LX, [L
w*

s.t. o(u,convS) < <u,f>

But from [23] we know that:
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heS ]
o(u,convSF1) o(u,SF) sup. f (u( m) h( ) )d u( 0)

SUp (u(t),x)dv() f O(u(to),F(o))dB()
xeF()

Hence o(u,convSF) < f u(0),f())dB()

On the other hand since f( .)eSlc--onvF we have f()econ--’- F()B-a.e.

(u(),f()) o(u(m),F())-a.e ==> f (u(),f())dB() f o(u(),F(m))dB()

a contradiction. Q.E.D.

Using this lemma we can have the following Lyapunov type result. So we assume

that (ll,r.,,) is a complete, o-flnite, nonatomlc measure space and X a separable

Banach space.

# then S
F

STHEOREM 4.1. If F: ’{@} is graph measurable and SF cony F

(heYe w indicates the weak topology on ).
PROOF. Note that slc--nvF is a closed, convex set. Hence we immediately have:

_--[w
(lemma a) (4 1)S F C_ S convF

cony SF

n
Let V(g {uk)m ,e) be a weakNext let g cony SF, g-- Z lifl,flSF.

neighborhood of g. So i-I k-I

V {he l<uk,g-h>[<e,k-I .....m}
where ueLv and e>0. Let L: R

m
be defined by

L(h) <Uk, h >k=l

Clearly L(.) is a continuous linear operator. We claim that L(S) is convex.

Let fl,f2K and consider A m(A)=L(XA(fl-f2) ). It is easy to see that m(.) is a

vector measure of bounded variation which is ,-continuous. So applying Lyapunov’s
theorem we get that Range(m) is

convex ==> A L(XA(fl-f2))+L(f2 AUE L(KAfI+ XAC f2

is convex. But since K is decomposable.

U L(XAfI+XACf2) C L(SF) and L(fl),L(f2) U L(XAfI+xAcf2).
AeZ AeZ

So indeed L(SF) is convex.

Thus we can find feSF s.t.



MEASURABLE MULTIFUNCTIONS AND CONVEX INTEGRAL FUNCTIONALS 181

n
mL(g) 1%1 <uk’fl > }kffil L(f).

t;1

and so.Therefore V(g,{uk} 1’ }0s
F

_-T-w
S
F

cony SF (4.2)

Combining (4.1) and (4.2) we finally have:

_--T-w
S
F =conv SF .E.D.

An immediate important consequence of theorem 4.1 is the following result. The

spaces remain as before, w

S then STHEORM 4.2. _._If F:R / Pwkc(X) is measurable and SF, extF extF SF

PROOF. From Benamara [2] we know that to extF(to) is graph measurable. So

w

applying Theorem 4.1 we get that SlextF SlconvextF SFI (Krein-Mllman theorem)

Another interesting consequence is the following result about the set valued

conditional expectation. Let E be a sub-o-fleld of E and assume that (.) has no
O

E -atoms
O

is w-compact inTHEOREM 4.3. If F:ll Pf(X) is integrably bounded and SF
r.

the.n. E F(to) is -a.e. convex.
W

PROOF, From Theorem 4.1 we have that Slr. is convex. Since
E F

o E EoF
in (Eo). Therefore S is convex E F(to) is .a.e. convex.EEoF

Now we examine the strong closure of SF. So let (R,E,) is a complete,

o-finlte measure space and X a separable Banach space.

then T. STHEOREM 4.4. If F:R 2X’{} is graph measurable and S
F S F F

PROOF. Since
-F

is closed in we get that S
F

let L :R 2X’{} be defined by:
n

Note that (to,x) lx-f(to>ll is a Caratheodory function and so it is Jointly
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measurable. Hence {(,x)exX:llx-f(t)ll ’ 1_.} eZ.xB(X). Also by hypothesis
n

GrFeZxB(X). Therefore for all n)l, GrL eZxB(X). Apply Theorem 2.1 to find
n

f : / X measurable s.t. f ()eL () for all e, n)1. Then clearly for all
n n n

’ fn() f()" Since lfn()ll II f()ll + I, applying the dominated

convergence theorem, we get that

f --" f =-> fESIF ==> S
F SF. Q:E.D.

n

The result has an interesting consequence. However before passing to it, we need

to have the following lemma. It generalizes a similar result of Klai-Umegaki [9], who

required the multifunctlons to be closed valued (see Corollary 1.2 of [9]). The

spaces remain as before.

SLEMMA B. l__[f FI,F2:2X’{} are graph measurable and SFI F2
then

FI() F2(m) -a.e.
PROOF. Suppose not. Then there exists AE with (A)>0 s.t. FI()’F2() # 0 for

all mA. Let R:A 2X’{o} be defined by R() FI(m)’F2(). Then GrRCZAXB(X)
(where E

A
E A). Apply theorem 2.1. to find g:A / X measurable s.t.

g() R() for all FA. Let {n}n)l be a Z-partition of

Define

mn n

Then clearly {C is a E-partltlon of A. Since (A) > 0 we can
mn m,n)l

find m,n)l s.t. (C > O. Set
mn

g() for
mn

f() for
mn

eS while f Swhere f(.)gS
F Then because of the decomposability of SFI f

F1 F
This produceslthe derived contradiction, q2.E.D.

Now we are ready for the theorem.

is nonempty and closedTHEOREM 4.5. l_f F:il 2X’{#} is graph measurable and SF

then F() Pf(X) -a.e.

PROOF. From Theorem 4.4 we have that S F S F SF. Apply 1emma 6% to get

that F() F() -a.e. >F(.) is valued -a.e. .
Now we will apply the results of this section to obtain versions of the "bang-bang

principle for infinite dimensional linear control systems with time dependent

control constraints. So consider the following system:

(t) A(t)x(t)+B(t)u(t) (4.3)

1
x(o) x u(t)eU(t)a.e u(.)eL,

0
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Here tcR+ A(t) is an unbounded, linear operator and B(.)9oc(R+;L(X)), where

L(X) is the space of all bounded linear operators from X into itself. We will assume

that the linear evolution problem (t) -A(t)x(t), x(o)=x admits a fundamental
O

solution $: {(t,s) :0st} L(X). Conditions on A(.) that guarantee the existence

of $(..) can be found in Kato [12]. Then if B(.)u(.) (R sX) we knoe that (4.3)
__OC

has a mild solution x (.)Cx(R+) given by:
U

t
x (t) @(t,o)x + f (t,s)B(s)u(s)ds,
U O +

O

Let R(t) be the set of the attainable points of system (4.3) using all feaslble

controls and let R (t) be the set of attalnable points of (4.3) using extremal
e

controls (i.e. u(t)eextU(t) a.e.).

The next theorem establishes the relation between those two sets and can be

viewed as an infinite dimensional generalization of the classical "bang-bang

principle" (see Hermes- LaSalle [8]).

4.e. S * 0extU

_then for all tR+ Re(t) R(t)w convex

PROOF. Clearly we need to show that R(t) C R (t)
e

definition there exists u(.)eSU s.t.

t
x(t)f(t,o)x + fO

O

!
From Theorem 4.2 we know that there exists net tL (.)S- s.t. u-xtU b

Then for every x*X* we have:

So let xcR(t)o By

t t

f (x*,$(t,s)B(S)Ub(S))ds f
O O

Note that ’ t1 *<,)11 IIx*ll-
o from the pcopectte off 0(,,,) (eee to [12]) e have

Hence s + B*(s)(t,s)xt belongs in LX [0,tl and so we have:

t t

f (B*(s)@*(t,s)x*, Ub(S))ds f (B*(s)@(t,s)x*,u(s))ds
0 0

==>

==>

=> Xb x.

Then

t

f @(t,s)B(S)Ub(S)ds
O

t

t

f (x*,#(t,s)S(s)u(s))ds
O

f (t, s)B(S)Ub(S)ds
O

Set x
b

@(t,o)x + f $(t,s)S(s)u(s)ds
O

Clearly XbCRe(t) -> x(t) cR (t)w==> R (t)w= R(t)w.
e e
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The convexity of the set is clear from the convexity of the values of U(.). Q.E.D.
LWith an lot(R+)- boundedness hypothesis on the control constraint multifunctlon

u(.), we can improve the conclusion of Theorem 4.6.

OC

_--_-then for all tR+, R(t) Re(t)wePwkc(X)"
t

PROOF. By definition R(t)--(t,o)x + f (t,s)B(s)U(s)ds.
o

Note that for all x*eX* o

o(x*,(t,s)B(s)U(s)) O(B*(s)*(t,s)x*,U(s))
Also since U(.) is Pwkc(X)-valued and measurable, (s z* o(z*,u(s)) is a

Caratheodory function from flxX* into R. Therefore it is Jointly measurable and

so s o(B*(s)C*(t,s)x*,U(s)) is measurable. Invoking theorem 111-37 of Castaln-
Valadier [5], we conclude that s (t,s)B(s)U(s) is a Pwkc(X)-valued, integrably

bounded multlfunctlon. So we can apply proposition 3.1 of [18] (see also [22]) and

get that
t

(t,s)B(s)U(s)dSPwkc(X) ==> R(t)Pwke(X) teR+.
o . E..D.

When X is a finite dlmensllonal Banach space, we obtain an extension of LaSalle’s

"bang-bang principle" (see Hermes-LaSalle [8]),to linear control syste.ms with time

dependent, nonconvex control constraints. Recall that if F:R 2X’{} is graph

measurable, SF1 and (.)is nonatomlc, then fF is convex Csee Kleln-Thompson [13]

Theorem 17.1.6 and for a generalization to Banach spaces [23]).

THEOREM 4.8. __If U: R+ Pf(X) is measurable and IU(.)t eLloc(1 R+)
then for all tcR+, Re(t) RCt)ePkc(X).

5. CONVEX INTEGRAL FUNCTIONALS ON LEBESGUE-BOCHNER SPACES.

In this section we use the theoretical results obtained previously, to conduct a

study of convex integral functlonals which are defined on Lebesgue-Bochner spaces.

Our work in this section extends earlier results of Rockafellar [27] (finite

dimensions) and Bismut [3] (finite dimensional or" separable, reflexive Banach spaces).

It is well known that if X is finite dimensional space and an integral functional

is weakly lower semicontlnuous on , then the integrand is automatically convex in

the state variable (See Bismut [3], Theorem and Rockafellar [27] Theorem I). Here we

extend this result to separable Banach spaces and we present a different, simpler

proof using Theorem 4.1.

First we need a Lemma. Asse that (i,l,) is a complete, o-flnlte, nonatomlc

measure space and X a separable Banach space.

140,LEMMA A. If F: 2X’{} is graph measurable and SF
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the_._n SF is w-closed if an only if F(w)ePfc(X) w-a.e.

w-closed in . Then from Theorem 4.1PROOF. First asstne that S
F we

have SF S Using Lemma B of section 4 we conclude that
convF

F(w) convF(w) -a.eo =-> F( w) ePfc (X) -ae.

is closed and convex So it is w-
Now assume that F()Pfc(X -a.e. Then SF

closed.

Now we are ready for our theorem The spaces are as above

Also if f:xX R is an integrand for x: X measurable we

set If(x) I f(m,x())d() (if the integral is not defined then we set If(x) -+).

THEOREM 5.1. I__f f:xX R is a normal integrand s.t.

I) there exist Xo()Lx s.t. If(xo) < ",

b) If(.) Is,( LX, -lower semicontinuous,

then f(w,.) is -a.e convex

PROOF Let E: ’{@} be the multlfunctlon deflnted by E() eplf(,.).
Since the Integrand f(.,.) is normal E(.) is closed valued and measurable. Mso note

is w-closed inthat (Xo(.) f+(.,Xo(.))e /0. We claim that SE xR().

let (Xb’)v
W-_xxRt- (x,A). Then for all Ar. we have:

A
If(Xb)

A
f f( ’xb())d(w)

A
f (m)d(m)

Note that l(z) If(XAZ + XAcxo) Acf(a,Xo(W))dt(w
and cf f(m’Xo(m))d() < " Also z() / (XAZ + XAcXo) is afflne continuous

So z + I(z) is w-l.s.c. Hence

AI (x) 4 llm If(xb) 4 f A(w) d(w)-=> f(w,x(w)) 4 A(w) -a.eo ==> (x,A)S
A

in Applying Lemma A we getSo indeed S
E

is w-closed __xR
that E(w) e Pfc(X) W’a.e--> f(w,.) is -a.e. convex. Q.E.D.

Now we pass to the subdifferential of f.(.). So assume that (,r.,) is a

complete, o-finite, measure space and X a separable Banach space. We will need the

decomposition theorem for [Lx] This result was first proved by oslda-Hewitt [32]
for X=R (see also Rockafellar [27]). Then it was extended to separable Banach spaces

by Ioffe-Levin [I0] and Rockafellar [28] and later to nonseparable Banach space by
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Levln [15]. A functional u(.)[Lx] is said to be absolutely continuous with respect

to , if there exists geL1, s.t.
X *

< u,x > (g()), x())d() for all x(.)LX-

A functional veiLX] is said to be singular with respect to if there

exist {a c Z s.t.
n
nl

i) In+ _c Rn nl li) (Rn 0 A) 0 for all Ar., (A)<(R) and

ill) < v,x > 0 for all xLX s.t. x R
n

for some nl.

THEOREM 5.2. [15] Every functional admits a unique decomposition

Y Ya+ Ys where Yo is absolutely continuous and Ys is singular with

respect to . Furthermore IlYll l[Yoll + llYoll"
TttEORII 5.3. I.__ f:l!xX R is a convex, norl integrand and If(.) is strongly

continuous on LX at Xo(.)

L w(LI,.then 8If(x o) c , is nonempty and ,Lx)-compact.
X * X *W W

*Furthermore if X is separable th.en f(,xo()) is a Pwkc(X)-valued
integrably bounded ltifunction.

,. , *PROOF. Let x ellx] and let x -Xla+Xls be its decomposition according to Theorem

5.2. From Levin [15], Theorem 6.4, we know that:

(If) (x) If,(Xa*) + o(x;,domIf)

Since If(.) is s-contlnuous at x 8If(xo) # .
O

Let x*eSIf(Xo )" Then by definition we have:

<t
a
+ x, Xo> If(Xo)+Clf)*Cx*) IfCXo)+If, CXa)+oCx,domIf) 4.4)

Note that because of the continuity of If(.) at x ,x intdom If and so
O O

if x* 0 then
S

< X’s, Xo > < o(x;, domlf)

which when used back in (4.4) produces a contradiction.

LTherefore x*s 0 ==> x* X*a ==> If(xo)_ _c X* ,
W
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Also the continuity at Xo(.) tells uslthat 81f(Xo is w*-compact in [Lx]
But the restriction of the w*-topology on L, coincides with the

w( * ,, Lx)-topology. Therefore If(xo) is w( * ,,Lx)-Compact.
w w

(see Ionescu-Tulcea [1 1] ).Now, if X*, is separable, then * , LX,
w

Also from Rockafellar [28] we know that If(xo) S f(. ,x (.))"
o

So applying

proposition 5.1 of [25], we conclude that 8f(,Xo()) is Pwkc(X)-valued
integrably bounded multifunctlon. Q.E.D.

REMARK. Our result generalizes Theorem 2 and its corollary in Blsmut [3]. In this

paper X was assumed to be separable, reflexive.

Next we look at some special type of subgradlents namely extremal subgradlents.

This spaces are as above.

THEOREM 5.4. If f:xX is a convex, normal integrand and If(.) is strongly

continuous on LX at Xo(.), _-__-then extSIf(Xo and for all uextSIf(Xo),
u(0) ext)f(o,xo(o) P-a.e.

PROOF. We know that If(xo) is w( * ,, Lx)-Compact. So by the Krein-Mllman
w

theorem we have that extIf(x . Also If(xo) SSf(. ,x (.) ==> extIf.(xo)o o

extslsf( ,xo())
But from Benamara [2], extS )f( ’Xo())

sl
ext )f( ,x

0
)"

Hence u:Sel’xt)f(. ,Xo(.) --> u(o) Eext 8f(O,Xo(O) )l-a.e.

Q. E .D.

integralNow we turn our attention for the conjugate of the convex

I/functional If: LX
Assigns that (R,Z,)is a complete, finite, nonatomlc measure space and X a

separable Banach space. Recall that f:X / RU{+m} is w-lnf-compact, if for all

ER,{xX:f(x) A} is w-compact.

THEOREM 5.5. If f:RxX + R is a convex, normal integrand which is w-inf compact in

x for all eR and there exists x(.)eL.*.,A s.t. If(x(.)) < + =,

then.. If,(.) is m(Lx,(R)w*’Lxl)-cntlnuus (Here m(.,.) denotes the Macke y

topology).

PROOF. Since by hypothesis If is w-lnf-compact, from Moreau’ s theorem (see,
Laurent [14]) we have that (If) is m-contlnuous at O. Also [If] If* (see Levln

[15] or Rockafellar [28]). Since from convex analysis we know that If,(.)is m-

continuous in the interior of its domain, we have to show that If,(.) is finite

everywher e.

From the fact that If,(.) is m-contlnuous at O, we get that there exists
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VCNm(0) {filter of m(Lx L )-neighborhoods of the origin} s.t. for all x*cV

we have

If,(x*) If,(0) +

From the definition of the Mackey topology, we know that V is the polar set of a

relatively w-compact set W in . So we can write:

V {x*(.):Lx, sup f (x*(t),u(t))d(t) ( 1}
w* ueW

Since W is relatively eoaet in , from Theorem

we have that W is unifoly integrable. SO for all e > 0 there exists 6 > 0 s.t.

Take e =. en sup f(x*(),u())d,() < I, for

cause (&i,Z,) Is finite, nonatoc, from Saks lem we knn that we can

find {
n
}k= E z"

n
u with () < , fo all k=l .....n. en

k=

m).f f*(,x*())dB(m) f f*(,X ()x*())d()- ff*C,o)d(
C

Ak
II A

k A
k

since If,(.) is m-continuous at O, f f*(,o)d() < .
Also sup f (XAk()x*(t), u())d,(m) sup f (x*(t),u())du(m) < l.

ugW R uW A
k

Therefore XAkX*(.) e V and so:

If*(’XAk(m)x*C))d"(O If, (XAkX*) If, (0) +

--> f f*(o,x*(o))d(o) < +(R).

==> If,(x*) <

and since x*gLx, was arbitrary, we have that dora I
w*

f, =Lx, Q. E .D.
w*

Now we will obtain a description for domlf, So assume that (R,E,)is a

complete, o-flnlte measure space and X a separable Banach space.

We recall that if f:X RU{+ }, f # + is convex, then the recession function

f:X RU{+ } is defined by fo(h) su{f(x+h)-f(x): xedomf}. If f(.) is in

f(x+%h)-f(x)addition lower semi continuous, then f(h) sup
>0
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THEOREM 5.6. If f:xX R is a convex, normal integrand, there exist

x and x*Lx, s.t. If(x)< and If,(x*) <+" and If(.) is lower semfcontfnuous

on then we have domIf, S,.(.,.)and for all x*(.)sextdomlf,
have x*()extdomf*(,.) -a.e.

we

i
PROOF. Since by hypothesis If(.) is l.s.c, on L and convex, from Theorem 6.8.5.

of Laurent [14], we have:

(If)(R) (x) o(x,dom(If)*).

Since by hypothesis domlf , (If)* If,, while from a simple application of

the monotone convergence theorem (see also Blsmut [3], Proposition I) we have that:

(If).(x) If.
Therefore f f(,x(0)d() o(x,d-mlf,). But f(R)(0,x()) o(x(,dom----f*(, .) ).

Observe that domf*(,.) U {x*X*:f*(,x*) n} =-> domf*(,.) is graph
nl

measurable.

that:

mso x*Sdom,(.,.). So applying Theorem 2.2 of Hial-Umegakl [9] we get

sup (x* ,x(o) )d I()
x*domf* ,

sup j’Cx* (),xC ))d ()
x*(. )dS-do, C. ,.)

==> o(x,domlf,) o(x,S
domf*(., .)

Since both sets are clearly convex, we conclude that:

domlf, &do*(.,.)

The second part of the conclusion, follows from the following equalities (see

Benamara [2]

extdomlf, extS-do, (.,) Sext-omf, (.,.)
Q.E.D.
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