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ABSTRACT. The purpose of this paper is to establish some new properties of set valued
measurable functions and of their sets of integrable selectors and to use them to
study convex integral functionals defined on Lebesgue-Bochner spaces. In this process
we also obtain a characterization of separable dual Banach spaces using multifunctions
and we present some generalizations of the classical "bang-bang" principle to infinite

dimensional linear control systems with time dependent control constraints.
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1. INTRODUCTION.

In the last decade the study of measurable set valued functions has been
developed extensively, both in the theoretical direction and the direction of
applications. Many mathematicians have contributed significant results in this area,
which combines challenging theoretical problems with 4important applications in a
variety of fields, 1like optimization theory, optimal control, statistics and
mathematical economics. In all those areas the systematic use of multifunctions has

allowed people to make significant progress and solve many problems.

With a series of recent papers [18] + [25] the author has started an effort to
extend the general theory of Banach space valued multifunctions and the closely
related theory of multimeasures. The present paper continues this effort and provides

some applications of the theoretical results obtained.

Briefly this paper is organized as follows. In the next section we establish our

notation and for the convenience of the reader we recall some basic definitions and
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facts from the general theory of multifunctions and the theory of measurable
integrands. In section 3 we have gathered some results, in which starting from
properties of the set of 1integrable selectors of a mltifunction we extract
information about 1its pointwise properties, the structure of 1its conditional
expectation and the properties of the underlying Banach space. Some other related
observations of functional analytic nature are also included. In section 4, we
proceed to a detailed study of the properties of the set of integrable selectors of a
multifunction and we present an application to control theory ("bang-bang" type
results). Finally in section 5, we use the results obtained earlier in order to study
convex integral functionals that appear often in problems of optimization, optimal
control and mathematical economics. With this combination of theoretical and applied
results, we want to emphasize the importance and the versatility of the theory of

multifunctions and attract the interest of mathematicians from different areas.

2. PRELIMINARIES.

Let (R, I) be a measurable space and X a separable Banach space. Throughout

this work we will be using the following notations:

Pf(c) = { A C X: nonempty, closed, (convex)}

P(w)k(c)(x) = { A C X: nonempty, (w-) compact, (convex)}

Also we will be using the following additional three pieces of notation. Let
X.
Ae2” {p}. By 'Al we will denote the norm of A i.e., lA‘ = sup. ||a", by
acA

* * "
d(.,A) the support function of A i.e., o(x ,A) = sup (x ,a), x €X and by d(.,A) the
a€A

distance function from A i.e., d(x,A) = inf ‘|x—a‘l.
acA
A multifunction F:8 > Pf(X) is said to be measurable if for every xe€X, the
function w * d(x,F(w)) is measurable. This definition is equivalent to saying that
there exist fn: 2 > X measurable functions s.t. for every we

F(w) = cl {fn(w)} >l ("Castaing's representation" - see Castaing - Valadier [5]).

>
A function f: 8 > X s.t. f(w)eF(w) is said to be a selector of F(.). The
problem of existence of measurable selectors {is central in the theory of
multifunctions. In applications the most widely used selection theorem, is the
following one which was first proved by Aumann [l] for Polish spaces and was later
extended to Souslin spaces by Saint-Beuve [30]. By L we will denote the universal
o-field corresponding to Z.
THEOREM 2.1 [30]. If X is a Souslin space and F:aHZX‘{O} is a multifunction
s.t. GrF={(w,x) € uxX:xeF(w)} € IxB(X), where B(X) is the Borel o-field of X,
then there exist f : @ + X, CI-measurable selectors of F(.) s.t. F(w) ¢ cl{fn(w)}n>l

for all wel
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REMARKS. a) If (§,L,u) is a o-finite complete measure space, then I = I .,
b) Recall that a Souslin space is always separable, but it need be metrizable (for
example a separable Banach space with the weak topology). c) If F(.) is closed valued
and measurable in the sense defined earlier then GrF € IxB(X) (graph measurablity).

The converse is true if I = I ({i.e. I is complete).

Let (2,L,u) be a o-finite measure space and let S:.- {f(.) ¢ L’l( :f(w) € F(w) .
u-a.el.
Using S; we can define a set valued integral for F(.) by

f F(w)du(w) = {f f(w)du(w):fesi,}. We say that F:Q + Pf(x) is integrably bounded
Q Q
if it is measurable and w *> 'F(w)‘ eL_}_. Using theorem 2.1 we can see that if F(.)

is integrably bounded then S;, and IQF are both nonempty.

Let K C L)l( be nonempty. We say that K is decomposable (also known as "convex
with respect to switching") 1f for all Ael and all (fl, fz) € KxK, fol+xAcf2 € K.

‘In [9], theorem 3.l., Hiai-Umegaki proved that if K is closed and decomposable, then
there exists F:Q + Pf(X) measurable s.t. K = Sll,.. Furthermore if K is bounded, then
F(.) is integrably bounded. Using this fact, Hiai-Umegaki [9], went on and defined as
set valued conditional expectation for F(.) as follows. Let Zo be a

sub—o-field of Z let F:Q »> Pf(x) be measurable with SFI, # P Define

K=cl {Ez°f:fesi,}. Then K 1is Zo-decomposable and so there exists

L T

E °F:0 + Pf(x) Zo -measurable s.te K = Sé&oF. The multifunction E OF(.) is the
set valued conditional expectation of F(.).

Next let (R,IZ,u) be a complete, o-finite measure space and X a separable Banach
space. Let f:QxX * RU {+=}, f#+», Following Rockafellar [28] we say that f(.,.) is
a normal integrand if the following conditions are satisfied:

1) (w,x) + f(w,x) is IxB(X) -measurable

ii) for all weR, x * f(w,x) is lower semicontinuous
(lesec)
Using the celebrated "Von Neumann projection theorem" (see Castaing - Valadier

[5], theorem III - 23) we can show that the above two conditions are equivalent to the
following. Recall that if g:X > RU{+~} , then epig = {(x,A)eXxR:f(x) < A}.

i') the multifunction w + epif(w,.) is graph measurable

11') for all weQ, epif(w,.) € Pf(XxR)

Note that ii') immediately implies that w + epif(w,.) is measurable. Because of
condition 1) a normal integrand £(.,.) 1is superpositionally measurable i.e. if
x:Q2 * X is measurable, then w *» f(w,x(w)) is measurable. A well known example of

normal integrands are the Caratheodory integrands. A normal integrand f(.,.) is said
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to be convex, if for all wef, f(w,.) is convex.

Let us also recall some notions from convex analysis. Llet f € I—(x. We define
af(x) = {x*eX* : (x*,y-x) < f(y)-f(x) for all yeX}. This is called the
subdifferential of f(.) at x. Also we define f*eﬁx* by f£*(x*)=sup{(x*,x)-f(x); xeX}
and this is known as the conjugate of f(.). The conjugate and the subdifferential are
related by the Young-Fenchel equality, namely: x*e€df(x) if and only 1f f*(x*)+f(x) =
(x*,x). Since we are dealing here with extended real valued functions we define the
effective domain of f to be: domf = {xeX:f(x)<=}.

Finally, recall that X has the weak Randon-Nikodym property (WRNP) if it has the
Radon-Nikodym property for the Pettis integral.

3. MEASURABLE MULTIFUNCTIONS.

We start with a result in which, knowing the structure of the set of integrable
selectors of a multifunction, we deduce some pointwise properties of the

multifunction. Another such result was obtained by the author in [25] (theorem 5.1).

Assume that (Q,I,u) is a complete, o-finite measure space and X a weakly
sequentially complete, separable Banach space.

THEOREM 3.1. If X* has the WRNP and Sl

F nonempty, bounded, closed and convex.

then F(w) epwkc (X) p-a.e.

PROOF. From Hiai-Umegaki [9] (theorem 3.2) we know that F(.) is integrably
bounded and so for all weQ™N,u(N)=0, F(w) is bounded.

Suppose that for some weQR"N,F(w) is not w-compact. Then the EberleinSmulian
theorem and the fact that X 1is w-sequentially complete give us a sequence

{xn} with no Cauchy subsequence. Recalling that {xn} a1 18 bounded, we can

n>1 >1

apply the result of Rosenthal [29] and deduce that {xn} n is an ll-sequence. Hence

>1
Elc—' X a contradiction to the fact that X* has the WRNP (see Musial-Ryll
Nardzewski [17]).
REMARK. If X* has the RNP, then the result is immediate, since X is reflexive (see
Diestel -Uhl [7], corollary 11, p. 198). But we know that in general the WRNP does
not imply the RNP.

In fact, when X is a Banach lattice we can have a partial converse of the above
theorem. So assume that (2,I,u) is a complete, o-finite measure space and X a
separable Banach lattice.

THEOREM 3.2. If the following implication holds: "S; is nonempty, convex and w—
compact == > F(w)ePwkc(X) u-a.e.", then X* is separable and w-sequentially complete.

PROOF. We will show that Eﬁ" X. Suppose not. Then from our hypothesis 1if

S; o Ll1 (Q) is nonempty, convex and w-compact then F(w)ePwkc(zl) p-a.e. Set M(A)
L

= {J f(w)du(w): feS;.}, Ael. Then M(.) is a Pwkc(ll) -valued multimeasure with a
A
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Pwkc(ll) -valued density, a contradiction to example 2 of Coste [6]. So "1¢ X and

*
then from a result of Lotz (see Diestel-Uhl [7], p.95) we deduce that X has the
RNP. Since X is separable from corollary 8, p.98 of Diestel-Uhl [7], we deduce that
X* is separable. Also cog" X* and so theorem 1, c.4 of Lindenstrauss - Tzafriri

[16] tells us that X* is w-sequentially complete. Q.E.D.

Also we have a weak compactness result for the set of integrable selectors of a
multifunction. Another such result can be found in [25]. But first we will need a
property of decomposable subsets of I;, which was proved by the author in [26]
(Proposition 5.1 - see also Diestel-Uhl [7], Theorem 4, p. 104). For the convenience
of the reader we recall the result here. Let (R,IZ,u) be a o-finite measure space
and X a Banach space.

PROPOSITION 3.1 [26]. If K C L; is nonempty, decomposable and bounded then K is
uniformly integrable.

Now assume that in addition X is weakly sequentially complete.

THEOREM 3.3, If K C L)lt is nonempty, decomposable, bounded and w-closed, with no
zl-sequence then K is w-compact.

PROOF. From Proposition 4.1 we know that K is uniformly integrable. Also since X
is weakly sequentially complete, so is L; (see Talagrand [31]). Combining these
facts with Corollary 8 of Bourgain [4] and the Eberlein-Smulian theorem we get that K

is w-compact. Q.E.D.
REMARK. If X 1is separable then K = Sll, where F:Q *Pf(x) is integrably

bounded. So indeed our result is a w-compactness result for the set of integrable

selectors of a multifunction.

4. PROPERTIES OF THE SET OF INTEGRABLE SELECTORS.

This section is devoted to a detailed study of the properties of the set of

integrable selectors of measurable (or graph measurable) multifunctions. Those
results are then applied to the analysis of a family of infinite dimensional linear

control systems with time dependent control constraints. 'The material of this section

will also be used in the next section, in the study of convex integral functionals.

We will start with an auxilliary result that we will need in what follows and
which also generalizes Theorem 1.5 of Hiai-Umegaki [9].

Assume that (9,I,u) is a complete, o-finite measure space and X a separable

Banach space.

LEMMA A. If F:Q * Zx‘{(]} is graph measurable and SII', # f then conv S:, = Slm F
PROOF. Clearly conv Sl C Sl— . Suppose that the inclusion 18 strict so

F = conv F

we can find fesl s.ts £ £ conv S;,. From the strong separation theorem there

conv F

© * —
exists u(.) € Lx*wk = [L)l(] Sete c(u,convsi,) < Lu,f>

But from [23] we know that:
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0(u,convS;) = a(u,S;) = sup, f (u(w),h(w))du(w)

heSF Q

[ sup  (u(w,x)du(w) = [ o(u(w),F(w))du(w)
2 xeF(w) Q

Hence o(u,convS;) < [ u(w), f(w))du(w)
Q

On the other hand since f(.)eSl , we have f(w)econv F(w)p—a.e.

convF

(u(w),f(w)) < o(u(w),F(w))pa.e ==> [ (u(w),f(w))du(w) < [ o(u(w),F(w))dpu(w) ==>
Q Q

a contradiction. Q.E.D.
Using this lemma we can have the following Lyapunov type result. So we assume

that (R,IZ,u) is a complete, o-finite, nonatomic measure space and X a separable

Banach space.

. 1 ™

THEOREM 4.1. If F:Q + P {#} is graph measurable and Sp * P then Sg S F

(here w indicates the weak topology on L;).

PROOF. Note that S1 is a closed, convex set. Hence we immediately have:

convF

1 —
Sp C S o = comv SF(lemma a) (4.1)

n
Next let g ¢ conv Sl, g=L Af ,f eSl. Let V(g,{uk}m ,€E} be a weak
F 1°F =1

1=1 i1
neighborhood of g. So

V= {hel; : |<uk,g-h>|<e,k-1,...,m}

where wely, and 0. Let L:L; »R" be defined by
wk
m
L(h) = <uk, h >k=1
Clearly L(.) is a continuous linear operator. We claim that L(S;) is convex.

Let fl,f2

vector measure of bounded variation which is up-continuous. So applying Lyapunov's

€K and consider A * m(A)=L(xA(f1-f2)). It is easy to see that m(.) is a
theorem we get that Range(m) is
convex ==)> R L(XA(fl-fZ))+L(f2) =\ L(fo1+ X,¢ £5)
is convex. But since K is decomposable.
1

U L(fol+xAFf2)_g L(SF) and L(fl),L(fz) [>51) L(XAf1+XACf2)°

A€l Ael
So indeed L(S;) is convex.

Thus we can find fesé Sete
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n
m
L(g) = {1::1 A £y > B o= L.
Therefore V(g,{uk}zsl, €} ns;, + @ and so.

—_—

S:, conv S (4.2)

Combining (4.1) and (4.2) we finally have:

—w

S;. = conv S;, Q.E.D.

An immediate important consequence of theorem 4.1 is the following result. The

spaces remain as before. —_—
. 1 1 1 1
THEORM 4.2. If F:Q » Pwkc(x) is measurable and Sps SextF # § then Sextl-‘ SF .

PROOF. From Benamara [2] we know that w * extF(w) is graph measurable. So

—_—
1

1
tF § convextF SF (KreinMilman theorem).

applying Theorem 4.1 we get that S:x

Another interesting consequence is the following result about the set valued

conditional expectation. Let Zo be a sub-o-field of I and assume that u(.) has no

Eo—atoms.
THEOREM 4.3. If F:Q + Pf(x) is integrably bounded and Sll, is w-compact in
1 z
13( then E °F(w) is p-a.e. convex.
1
PROOF, From Theorem 4.1 we have that * S 80 is convex. Since
E 'F
z 1 1 L 1 1
E % 1.x + L,(Z ) is continuous linear, E 9s;) is w-compact ==> S is w-compact
X o F EXoF
1 1 zo
in ]1((2 ). Therefore S is convex E F(w) is p.a.e. convexe.
° EZoF

Now we examine the strong closure of Sl'l,. So let (9,Z,u) is a complete,

o-finite measure space and X a separable Banach space.

THEOREM 4.4. 1If F:2 + 2°°{¢} is graph measurable and 5117 * p then s;. - s
F

PROOF. Since S-il'; is closed in L’l(, we get that S . Let f(.)ESl For

F

)t

1
F < F
n>l let Ln:ﬂ +> Zx‘{a} be defined by:

L (@) = {xeF(u): “x'f(‘”)H <%}

GrL = {(w,x)exX: Hx—f(w)“ < ?1{} N GrF

Note that (w,x) » Hx—f(w)” is a Caratheodory function and so it is jointly
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measurable. Hence {(w,x)eSb;X:“x—f(w)” <%|-} €LxB(X). Also by hypothesis
GrFelxB(X). Therefore for all n3>l, Gane)IxB(x). Apply Theorem 2.1 to find

fn:ﬂ + X measurable s.t. fn(m)eLn( w) for all weR, n>l. Then clearly for all
wesl, fn(w) 8 f(w). Since an(w)H < “f(w)ll + 1, applying the dominated

convergence theorem, we get that

s-Ly T T

1
fn — f == fESF ==> SF = S-l; . Q.E.D.

The result has an interesting consequence. However before passing to it, we need
to have the following lemma. It generalizes a similar result of Hiai-Umegaki [9], who
required the multifunctions to be closed valued (see Corollary 1.2 of [9]). The
spaces remain as before.

LEMMA B. lf_Fl,Fzzﬂézx‘{ﬂ} are graph measurable and SII‘. = S:, # @ then
Fl(w) = Fz(w) u-a.e. ! 2

PROOF. Suppose not. Then there exists Ael with u(A)>0 s.t. Fl(m) Tz(w) # 0 for
all weA. Let R:A » 2x‘{0} be defined by R(w) = Fl(w) Tz(m). Then GrRe):AxB(X)
(where ZA =L A). Apply theorem 2.1l. to find g:A * X measurable s.t.

g(w) € R(w) for all weA. Let {ﬂn}n>l be a I-partition of & s.t. u(ﬂn)<".
Define
Con = {weA: m-1 < ”g(m)” < m} @

Then clearly {cmn}m,n>1 is a ZI-partition of A. Since u(A) > 0 we can

find m,n>! s.t. u(Cmn) > 0. Set
g(w) for wecmn

f(w) = {
f(w) for weR™C
mn
where f(.)esi. . Then because of the decomposability of S:, fﬁ:, , while f £ S:. .
This produceslthe derived contradiction. 1 ! ggE.D.

Now we are ready for the theorem.

THEOREM 4.5. If F: 4 » 2x*{¢} is graph measurable and Sll',
1

1an

is nonempty and closed

then F(w) € Pf(x) H-a.e.

PROOF. From Theorem 4.4 we have that S; = S;. = S%;. Apply lemma B to get
that F(w) = F(w) p-a.e. =>F(.) is valued u-a.e. Q.E.D.

Now we will apply the results of this section to obtain versions of the "bang-bang
principle"”, for infinite dimensional 1linear control systems with time dependent

control constraints. So consider the following system:
x(t) = A(t)x(t)+B(t)u(t) (4.3)

x(o) = X s u(t)eu(t)a.e, u(.)eL)l(
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Here teR , A(t) is an unbounded, linear operator and B(.)SL;OC(R+;L(X)), where
L(X) is the space of all bounded linear operators from X into itself. We will assume
that the 1linear evolution problem x(t) = A(t)x(t), x(o)-xo admits a fundamental
solution ¢:{(t,s):0<s<t} » L(X). Conditions on A(.) that guarantee the existence
of #(.,.) can be found in Kato [12]. Then if B(.)u(.)eLioc (Rl ,X), we know that (4.3)
has a mild solution xu(.)ECx(R+) given by:

xu(t) = ‘I)(t:,o)xo + ? ®(t,s)B(s)u(s)ds, tt-:R+
o
Let R(t) be the set of the attainable points of system (4.3) using all feasible
controls and let Re(t) be the set of attainable points of (4.3) using extremal
controls (i.e. u(t)eextU(t) a.e.).
The next theorem establishes the relation between those two sets and can be
viewed as an infinite dimensional generalization of the classical "bang-bang
principle" (see Hermes - LaSalle [8]). L

THEOREM 4.6. If U:R_* kac(x) is measurable and Sy» sextU #0

R (t)" = R(t) = convex

_
PROOF. Clearly we need to show that R(t) QRe(t) . So let xeR(t). By

then for all teR,

definition there exists u(.)b:StlJ Sete

t
x(t)-‘b(c,o)xo + f #(t,s)B(s)u(s)ds
o

1
w-
8e.te u ——Lx—"u.

From Theorem 4.2 we know that there exists net ub(.)esix b

tU
Then for every x*eX* we have:

t t
[ (x*,0(t,8)B(s)u () )ds = [ (B*(s)®(t,8)x*,u (s)ds
o o

Note that ||B*(s)o*(t,s)x*|| < ||B*(s)|| ||o*e,o)]| ||x*|].
Algso from the properties of ¥(.,.) (see Kato [12]), we have
”ﬁ(t,s)“ = “é*(t,s)” <M, while by hypothesis ”B(s)” - HB*(s)“

<310, 010

Hence s + B*(8)®* (t,s)x* belongs in L;* [0,t] and so we have:
wk

t t
[ (B*(8) ¢*(t,8)x*, ub(s))ds + [ (B*(s) #*(t,8)x*,u(s) )ds
0 0
t
== = [ (x*,8(t,s)B(s)u(s))ds

o
t t
==> [ #t,8)B(s)y, (s)ds ¥ [ 8(¢,8)B(s)u, (s)ds
o o

t
Set Xy = O(t,o)xo + f ®(t,s)B(s)u(s)ds

[
Then

= x ¥ x. Clearly xR () ==> x(t) ER_(£)"==> R_(£)"= TOM
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The convexity of the set is clear from the convexity of the values of U(.). Q.E.D.
1
With an Lloc(R+)- boundedness hypothesis on the control constraint multifunction

u(.), we can improve the conclusion of Theorem 4.6.

THEOREM 4.7. If U: 1
Ifu R+ +> Rch(x) is measurable and |U(.)'eLl°c(R )

+

th = .
en for all t€R+, R(t) Re(t) ePwkc(X)

t
PROOF. By definition R(t)-‘b(t,o)xo + [ &(t,s)B(s)U(s)ds.
Note that for all x*eX* °

o(x*,®(t,s)B(s)U(s)) = o(B*(s) ¢*(t,s)x*,U(s))

Also since U(.) is Pwkc(x)-valued and measurable,(s,z*) + o(z*,u(s)) 1is a
Caratheodory function from QxX* into R. Therefore it 1is jointly measurable and
so s * o(B*(s)®*(t,s)x*,U(s)) is measurable. Invoking theorem I11I-37 of Castaing-
Valadier [5], we conclude that s *+ ®(t,s)B(s)U(s) is a Pwkc(x)—valued, integrably
bounded multifunction. So we can apply proposition 3.1 of [18] (see also [22]) and
get that t
jw(t,s)n(s)u(s)dsepwkc(x) ==> R(t)er  (X) teR,.

° Q.E.D.

When X is a finite dimensiional Banach space, we obtain an extension of LaSalle's
"bang-bang principle" (see Hermes-LaSalle [8]),to linear control systems with time
dependent, nonconvex control constraints. Recall that 1f F:Q + Zx‘{G} is graph

measurable, S1 # @ and u(.) is nonatomic, then [F is convex (see Klein-Thompson [13],
Q

F

Theorem 17.1.6 and for a generalization to Banach spaces [23]).
. 1
THEOREM 4.8. 1If U:R_ * P (X) is measurable and |U(.)|eL; (R.)

then for all ceR+, Re(c) = R(c)ePkc(x).

5. CONVEX INTEGRAL FUNCTIONALS ON LEBESGUE-BOCHNER SPACES.

In this section we use the theoretical results obtained previously, to conduct a
study of convex integral functionals which are defined on Lebesgue-Bochner spaces.
Our work in this section extends earlier results of Rockafellar [27] (finite
dimensions) and Bismut [3] (finite dimensional or separable, reflexive Banach spaces).

It is well known that if X is finite dimensional space and an integral functional
is weakly lower semicontinuous on L;, then the integrand is automatically convex in
the state variable (See Bismut [3], Theorem 1 and Rockafellar [27] Theorem 1). Here we
extend this result to separable Banach spaces and we present a different, simpler

proof using Theorem 4.1.

First we need a Lemma. Assume that (2,IZ,u) is a complete, o-finite, nonatomic

measure space and X a separable Banach space.

LEMMA A. If F:Q » Zx‘{G} is graph measurable and S; 0,
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1
then SF is w-closed if an only if F(w)ePfc(X) u-a.e.

PROOF. First assume that St. is w-closed in I’l(. Then from Theorem 4.l. we

1 1

have SF =S + Using Lemma B of section 4 we conclude that

convF

F(w) = convF(w) p-a.e. ==> F(w)ePfc(x) H-gd.e.
Now assume that F(w)ePfc(X) W-ase. Then Sll, is closed and convex. So it is w-

closed. Q.E.D.

Now we are ready for our theorem. The spaces are as above.
Also if f:xX + R is an integrand for x:Q + X measurable we
set If(x) = [ f(w,x(w))du(w) (1f the integral is not defined then we set If(x) = $w),
Q
THEOREM 5.1. If f:OxX *E is a normal integrand s.t.
1
1) there exist xo(.)ELx Sete If(xo) { ®,
1 ©
b) If(.) is w(l.x, Lx*w*) -lower semicontinuous,

then f(w,.) is u-a.e convex

PROOF. Let E:Q + Zx“{d} be the multifunction definted by E(w) = epif(w,.).
Since the integrand f(.,.) is normal E(.) is closed valued and measurable. Also note

that (xo(.), f+(..xo(.))esé #/0. We claim that Sé is w-closed in I’tm(ﬁ). So

L §
let () 2R

(x,A). Then for all Ael we have:
1Xx ) = [ £ux (W)du(w) < [ A (@du(w)
£\ %p A A %
Note that I:(Z) = If(xAz + xAcxo) - A{‘:f.(m,xc’(l-ﬂ))t‘lll(m)
and {cf("’,xo(w))du(w) <=, Also z(.) * (xAz + xAcxo) is affine continuous.
So z + I?(z) is w-l.8.ce Hence
G0 < Lim If(x) € [ M) du(e) == £(6,x(0)) € X0) wawe. ==> (x,A)es)
A

1 1
So indeed SE is w-closed in LXxR' Applying Lemma A we get

that E(w) € Pfc(X) w-a.e ==> f(w,.) 18 p-ase. convex. Q.E.D.
Now we pass to the subdifferential of If(.). So assume that (Q,Z,u) is a

complete, o-finite, measure space and X a separable Banach space. We will need the
decomposition theorem for [L;]*. This result was first proved by Yosida-Hewitt [32]
for X=R (see also Rockafellar [27]). Then it was extended to separable Banach spaces
by Ioffe-Levin [10] and Rockafellar [28] and later to nonseparable Banach space by
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*
Levin [15]. A functional u(.)e[L;] is said to be absolutely continuous with respect
to u, if there exists gsLl* Sete

X *

w

<Cux > = [ (g(w), x(w))du(w) for all x(.)eL;.
W

*
A functional ve[L;] is said to be singular with respect to uy if there

exist {2 } ¢ I s.t.
n>1

£ %, e @ 2l 4d) w(® N A) >0 for all AeZ, u(A)<= and

i11) < v,x > = 0 for all xeLx

Sete x|Q = 0 for some n>l.
n
*
THEOREM 5.2, [15] Every functional ye[l.;] admits a unique decomposition
y = ya+ Ve where Yo is absolutely continuous and g is singular with
respect to U. Furthermore ”y” - ”yOH + ”yo”'

THEOREM 5.3. If f:xX » Ris a convex, normal integrand and If(.) is strongly

o
continuous on l.x at xo(-)

then 9I_(x ) ¢ I.1 is nonempty and w(Ll ,Lw)-compact.
fhen ol lx,/ £ X* . x* e ¢
w
*
Furthermore if X 4is separable then w » Bf(w,xo(m)) is a Pwkc(x)-valued

integrably bounded multifunction.
x *x x
PROOF. Let x e[Lx] and let x -x|a+x|8 be its decomposition according to Theorem
5.2. From Levin [15], Theorem 6.4, we know that:

' " - Lea(xX) + o(x%,doml.)

f)
Since I_(.) is s-continuous at x , 3L _(x ) # P.
b3 o f' o
Let x*ealf(xo). Then by definition we have:

<x: + x:, x°> = If(xo)+(1f)*(x*) = If(xo)+1f*(x8)+0(x§,dom1f) (4.4)

Note that ©because of the continuity of If(.) at X, ,xoe intdom If and so
if x’s|r # 0 then

*
< x‘;, X > < v(xs, domIf)
which when used back in (4.4) produces a contradiction.

1
* = () ==)> xk = xh ==
Therefore x* = 0 > x xh ==> 3If(xo) <& Ly, .

w
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Also the continuity at X (.) tells us that 31 (x ) is w*-compact in [L ] .
But the restriction of the w*—topology on LX* coincides with the
wk

w(L;* x> Lx) topology. Therefore 31 (x ) is w(Lx* ,L )-compacc.
w
Now, if X*, is separable, then L;* x" L)l(* (see Ionescu-Tulcea [11]).
w
1
Also from Rockafellar [28], we know that BIf(xo) - Saf(' x ()" So applying

proposition 5.1 of [25], we conclude that w + Sf(w,xo(w)) is Pwkc(x)-valued
integrably bounded multifunction. Q.E.D.
REMARK. Our result generalizes Theorem 2 and its corollary in Bismut [3]. In this

paper X was assumed to be separable, reflexive.

Next we look at some special type of subgradients namely extremal subgradients.
This spaces are as above.
THEOREM 5.4. If f:uxX + R is a convex, normal integrand and If(.) is strongly

continuous on I; at xo(.), t hen extalf(xo) # 0 and for all ueextalf(xo),

u(w) € extaf(m,x (w)) p=a.e.
PROOF. We know that 81 (x ) is w(Lx* at Lx)—compact. So by the KreinMilman

1
theorem we have that excalf(xo) + p. Also Slf(xo) Saf(. ,xo(.) > extalfgxo)
= ext:S1 « But from Benamara [2] extS1 = S1 .
3f(.,xo(.)) ’ af(.,xo(.)) extIf(e,x (o))

Hence ueSl ==> uw(w) eextaf(w.xo(m))u-a.e.

extIf (. X (.))
Q.E.D.

Now we turn our attention for the conjugate of the convex integral
)
: +R .
functional If Lx R

Assume that (2,IZ,p) is a complete, finite, nonatomic measure space and X a
separable Banach space. Recall that f:X »> RU{+=} is w-inf-compact, if for all
AeR, {xeX:f(x) < A} is w-compact.

THEOREM 5.5. If f:0xX *-I-l- is a convex, normal integrand which is w-inf compact in
x for all weR and there exists x(.)eL}l(, Bete If(x(.)) { + =

then If*(.) is m(L;* ,L)l()-continuous (Here m(.,.) denotes the Mackey
topology). wt
PROOF. Since by hypothes*is If is w-inf-compact, from Mo*reau's theorem (see
Laurent [14]) we have that (If) is mcontinuous at 0. Also [1f] = If* (see Levin
[15] or Rockafellar [28]). Since from convex analysis we know that If*(.) is m—

continuous in the interior of its domain, we have to show that I .) is finite

f*(
everywhere.

From the fact that If*(.) is mcontinuous at 0, we get that there exists
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VeNm(O) = {filter of m(L;* , L;)-neighborhoods of the origin} s.t. for all x*eV
wk

we have
If*(x*) < If*(O) + 1

From the definition of the Mackey topology, we know that V is the polar set of a

relatively w-compact set W in L;. So we can write:

@
V= {x*(o)ELx* :sup [ (x*(w),u(w))du(w) < 1}
w* ueW Q
Since W is relatively w-compact in 131(, from Theorem 4, p. 104 of Diestel-Uhl [7],
we have that W is uniformly integrable. So for all € > 0 there exists § > 0 s.t.
if u(A) < &, then sup f”u(w)” du(w) < €. Let x*eL;* , X* # ¢
uew A wk

Then sup [(x*(w),u(w))du(w) < 1, for n(A)<S.

Take € -———l——.
=+l us A

Because (£,L,u) is finite, nonatomic, from Saks lemma we known that we can
n
find {A } | c L.
U = Q with p(A)) < 8, for all k=1,...,n. Then
ULk 5
w. ) FH@x*@)du) = [ f*(u,x  (0x*(w)duw) - [£*(w,0)dul
° Q A " AS
A K
since It'*(') is m-continuous at O, f f* (w,0)du(w) < =,

A

Also sup | (x, (@3x*(w), u(w))du(w) = sup [ (x*(w),u(w))du(w) < 1.
ueW 2 Pk ueW A

Therefore x*(.) € V and so:

X

A

szf*(w’xA (W)x*(w))du(w) = I, (x, ¥*) < I, (0) + 1
k k

==> [ £*(0,x*(w))du(w) < +=.

==> I,(x*) <=

and since x*e o was arbitrary, we have that dom I =-1..a° . «E.D.
*w* £* X*w*

Now we will obtain a description for domIf*

complete, o-finite measure space and X a separable Banach space.

So assume that (R,I,u) is a
We recall that if f:X » RU{+ =}, f # + » ig convex, then the recession function
£:X > RU{+ =} is defined by f_(h) = sup{f(x+h)-£f(x): xedomf }. If £(.) is in

addition lower semicontinuous, then £.(h) = sup f_(x"_“‘).:@
A0
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THEOREM 5.6. If f:QxX + R is a convex, normal integrand, there exist
1 ®
* *
x:lx and x Lx*w*s.t. If(x)<°° and If*(x ) <+= and If(.) is lower semicontinuous

1 — © —
= §— *
on Ly, _then we have domI ., domf*(.,.)and for all x (.)eextdom]’.f* we
have x*(w)ecextdomf*(w,.) u—a.e.

PROOF. Since by hypothesis If(.) is lesecs on L}( and convex, from Theorem 6.8.5.

of Laurent [14], we have:
(1), (%) = o(x,dom(I)*).

Since by hypothesis domIf 0, (If)* = If*, while from a simple application of

the monotone convergence theorem (see also Bismut [3], Proposition 1) we have that:

(1), =1,

@

Therefore [ f_ (w,x(w)du(w) = o(x,doml_,). But f_(w,x(w) = o(x(w,donf*(w,.)).
Q

Observe that domf*(w,.) = U {x*eX*:f*(w,x*) € n} ==> w + domf*(w,.) is graph
n»l

measurable. Also x*eS So applying Theorem 2.2 of Hiai~Umegaki [9] we get

domf*(.,.)"°
that:

| o(x(w),domf* (w,+))du(w) = [ sup_ (x*,x(w))du(w)
9] Q x*edomf* (w,.)

= gup J(x* (0),x(w))d u(w)
xS Tmer (L, )

==) o(x,domlf*) = a(x,$§
domf*(.,.)

Since both sets are clearly convex, we conclude that:
donl So—
Onlex T Tdomt* (. ,.)

The second part of the conclusion, follows from the following equalities (see

Benamara [2]):

extdoml ., = EXtSdomf*(,,) = sextdomf*(- se)

.E.D.
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