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ABSTRACT. It is shown that the category of non-Archimedean metric spaces with l-Lip-

schitz maps can be embedded as a coreflectlve non-bireflective subcategory in the cate-

gory of fuzzy uniform spaces. Consequential characterizations of topological and uni-

f’orm properties are derived.
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I. INTRODUCTION.

We show that the category NA(1) of non-Archimedean metric spaces with metric bound-

ed by and with morphisms the non-expanslve maps is coreflectively embedded in the cate-

gory FUS of fuzzy uniform spaces [4], [9] in an extremely simple and natural way.

Through the forgetful functor FUS FNS [5] each space in NA(1) then moreover determines

a non-topologically generated space in FNS, the topological modification (i.e. TOP-core-

flection) of which is nothing else then the metric topology. This means that the dla-

gram

NA(1) ’emb’edd!ng > FUS

forgetful forgetful
v functor v functor

TOP <’ coreflecion FNS

is commutative. From a local point of view, an interesting aspect of this situation is

that given (X,d) we can study this space first with the concepts available in FUS [4],

[9] and with those available in FNS [5], [6] before going to the topological space
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(X,Td) associated with (X,d). E.g. we can "forget" at intermediate stages.

From a global point of view embedding NA(1) in FUS also seems natural. E.g. the func-

tot NA(1) TOP does not preserve products. NA(1)., although being coreflectively em-

bedded in FUS, is not bireflectively embedded, in particular the embedding does not

preserve products, but it are precisely the products in FUS and in FNS which are mapped

onto the topological product in TOP (TOP is both coreflectively and bireflectively em-

bedded in FNS). Thus in order to have a more faithful relation with TOP it seems suit-

able to consider NA(1) as a subcategory of FUS. In particular we further study comple-

teness of NA(1)-objects in FUS, and we also give a fairly complete account of the most

important topological properties of NA(1)-obJects in FNS.

2. PRELIMINARIES.

Most notions used are standard, we just recall some notations and some concepts

specific to the context.
+As always R0

stands for the strictly positive real numbers, I := [0,I],

I0 :ffi ]0,i] and I := [0,I[.

If X is a set and A c X, 1A stands for the characteristic function of A. If A IX

and IXxX then <> IX is given by <A>(x) sup A(y) A (y,x). If l{x we

we simply put <x> and obviously <x>(y) (x,y).Yiso o IXX is given by

o (x,y) sup (x,z) ^ (z,y).

Further stands for the prefilter

stands for the prefilter [{ sup

If d is a pseudometric on X then we put Td
and U

d resp. the associated topology

and uniformity.

If d fulfils the strong (or ultrametrlc) triangle inequality we call it a non-

Archimedean pseudometrlc.

The functors i, t, ’ u are well-known [3], [4], [5] but we recall the functors

FUS UNIF determined by
U,

U,

and t FUS FTS where then t(])

T UNIF TOP where then T(U) stands for the topology associated with U.

filter ] [3], we recall also that its characteristic value is given by

If

[9]

In

mal

stands for the fuzzy topology associated with ] and

For a pre-

c() :ffi inf sup l(x) inf{a Ila }.
eF xX

X,]) IFUSI and C is a prefilter on X then it is called a hyper Cauchy prefilter

if it satisfies the conditions

(HCI) c(C) i

(HC2) C

I0 Pe e v.(HC3) v U e e Pe C Pe
9] it was shown that for any hyper Cauchy prefilter C, there exists a unique mini-

hyper Cauchy prefilter C
0

c C. Moreover, if B is a basis for C and M a basis for
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then

0 {<>I eW’ eB)~.
A fuzzy uniform space (X,U) is called ultracomplete [9] if for each minimal hyper

Cauchy prefilter C there exists x e X such that C U(x) where U(x) :=

which is equivalent to the fact that (X,I ()) is complete.u
Finally, (X,) is called precompact [9] if it satisfies the condition

x e X, e e I0, ] y e 2
(X) sup v<x> e, which is also equivalent to the fact

xeY
that (X,t (W)) is precompact.

U

3. DEFINITIONS AND FUNDAMENTAL PROPERTIES.

We first put together some elementary technical properties.

LEMMA 3.1.

If X is a set and d a non-Archlmedean pseudometric on X, then

d := i- d X X I has the following properties

a. x e X d(X,X) I;

b. d is symmetric;

c. d o d d’ or equivalently

(x,y,z) e X3 d(X,Z) ^ (z,y/ d(x,y).

iXxX2 If conversely has the properties

a. x X (x,x) 1

b. is synetric

c. o ,
then d := 1- is a non-Archimedean pseudometric on X for which d I.

3 If d .< I is a non-Archimedean pseudometrlc on X, and if we put

then

D {(x y) Id(x,y) < r}

B(x,r) {yld(x,y) < r},

l(]r I]) D (#d<X>)’l(]r,l]) B(x l-r)-r’

PROOF. Straightforward.

In the sequel, if no confusion can arise, we simply put resp. d instead of d
resp. d.
THEOREM 3.2. If d .< is a non-Archimedean pseudometric on a set X, then {}, with

:= 1- d, is a basis for a fuzzy uniformity ](d) on X, where

U(d) := {,}~ .
Conversely, if U is a fuzzy uniformity on X, having a singleton basis {}, then this

function satisfies the conditions a, b, c in Lemma 3.1.2, and therefore U ](d)

where d:= 1-@ is a non-Archimedean pseudometric.
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PROOF. The first part follows from Lemma 3.1.1 and the second part from the defi-

nition of a basis of a fuzzy uniformity [4] and an application of Lemma 3.1.2.
We now describe the general properties of U(d), where it is .always supposed that d

is a non-Archimedean pseudometric such that d & I.

PROPOSITION 3.3. The following hold

for all = e I a basis for =(g(d)) is given by {D Ire ]=,I]} and therefore
u, r

=(g(d)) c Ud;U,

2 for all (=,x) e I X, the neighborhoodfilter N=(x) of x in t=(t(U(d))) has

{B(x,r)Ir e ]=,I]} as a basis;

3 u(U(d)) U
d

and so T(tu(U(d))) Td;
4 for all = e I (t((d))) T( =((d)));
5 for all e ! X the closure and the interior of in t((d)) are given by

(x) sup (y) h (y,x), (x) inf (y) V d(y,x).
yeX yeX

6 A e t((d)) iff there exists a partition PA of X by means of balls, i.e. a subset

y c X and a function p Y Ox;
7 (t(U(d))) is Hausdorff iff d(x,y) > = for all x y;

8 (X,(d)) is WT
2

iff d is metric;

9 (X,(d)) is T2 iff d(,y) for all x y, i.e. iff d is the discrete metric.

PROOF. Immediate from the definition of ((d)) and from #-l(]l-r,l]) D

2 From Lma 3.i.3. and the fact that (X,U(d)) is a fuzzy neighborhood space.

3 From and
u u,0

4 This is a know property of general fuzzy uniform spaces.

5 Immediate from Proposition 2.4 in [5].

6 If A e t((d)), x e X, A(x) = and d(x,y) < =, it follows from

that A(y) =.

A(y) A(y) inf A(t)Vd(t,y) =< A(x) V d(x,y)

However, we also have

= A(x) (x) inf A(t) V d(t,x) $ A(y) V d(x,y),
reX

hence A(y) =.

This means that A-l(=) D{B(x,=)IA(x) =}, and as each two of these balls are either

identical or disjoint, we can choose Y c X such that {(x,=)lx y is a disjoint fa-

mily with A-l(=) as a union. Putting Y := U Y p := = iff x e y we are done.

Conversely, if A e IX is such that the described partition exists and if = e If, we have

A I(]=,1]) U{B(X,Px)[X e O- ]=,I]},

which is clearly open in (t(U(d))). Since (X,t((d))) is a fuzzy neighborhood space,

t(W(d)) is maximal for its level topologies [13], and therefore A e t(W(d)).
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7 This follows from the fact that, by , la(t(U(d)) is Hausdorff iff 0re]a,l Dr is

the diagonal of X X.

8 This is nothing else than the definition of WT2.
9 (X,U(d)) is T

2
iff (x,y) 0 for x y, so iff d(x,y) for x y.

REMARKS 3.4. I. If d and d’ are equivalent, the fuzzy uniformities (d) and

U(d’) are nevertheless in general different.

2. In the foregoing it was always supposed that d i. Starting from an arbitrary d,

we can define a family of fuzzy uniformities. Indeed, given the non-Archimedean pseudo-
+

metric d on X and E R0, we can define d ( d) A which is equivalent to d and

consider U(d) := ," where .-’- d
E (I- V 0. Even in this case the fuzzy

+uniformities (dE), 0’ are in general not equivalent to each other, (some interest-

ing relations will be established in Propositions 3.5 and 4.), e.g. if X := E where

then it is well known that d given by

0 Yn x =Ynd(x )n (Yn)n) := n
n (min k xkyk otherwise

is a non-Archimedean metric on X, and it is easily seen that (X,l(d)) and (X,(d ,))
E E

are not isomorphic if ’.

3. It is evident that the properties of U(d) can be obtained from the corresponding

ones of B(d) by replacing everywhere d by d So for instance, it follows from Propo-
E

sition 3.4.1 that a basis for tu,a(O(d )) is given by {D’l=r < r} where

D’ {(x,y) ld(x,y) < r}.r
Since this translation of properties of (d) into properties of (de) is a simple exer-

cise, while the formulation of the former is simpler, we shall continue to restrict

ourselves mainly to the case d i.

4. From Proposition 3.3.6 it follows that all elements of t(U(d)) are l-Lipschitz, the

converse however is not true. Consequently t(l) is strictly coarser than the structure

A(1) of [7].

PROPOSITION 3.5. The following hold

’ E => (dE) c (dE,)
2 inf+ U(de) {i};
e

0
3 sup+ (d) u(Ud).
e0
PROOF. is evident, and for 2 it suffices to remark that if inf+ U(d) then

V e d for all e eO. +For 3 note that by Proposition 3.3.3 for all e eO we have U(de c u(Ud) i.e.

sup + (de) c u(Ud). The converse inclusion follows at once upon remarking that for
ee0
all e 0 we have 1D e (de) and that {De[e is a basis for Ud-

E

4. CONTINUITY AND CONVERGENCE

PROPOSITION 4.1. A map f (X,[d)) (X’,U(d’)) is uniformly continuous if and only

f (X,d) (X’,d’) is l-Lipschitz, i.e. non-expanslve.
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PROOF. Immediate from the fact that # -< (fxf)-l(’) if and only if d’ o (fxf) <. d.

Since in the case of the above result the local character of the Lipschitz condi-

tion has disappeared we reformulate the foregoing result in the general case. With

Remarks 3.4.2 and 3.4.3 in mind, the proof is obvious.

COROLLARY 4.2. A map f (X,U(d)) (X’,U(d’) is uniformly continuous if and only if

f (X,d) (X’ d’) is e-locally
ee’
--Lipschitz. m

For concepts and results concerning convergence we refer to [2], [3].

PROPOSITION. 4.3. If F is a filter on X then F x in (X,Td) if and only if

lim (F) <x> in (X,t(W(d))).

PROOF. As Theorem 5.3 in [7].

In spite of Remark 3.4.2 in special cases the spaces (X,(d)) and (X,(d ’)) can be

isomorphic.

+PROPOSITION 4.4. If X is a non-Archimedean normed space then all (X,(de)), e e0,

are mutually isomorphic.

PROOF. As Theorem 5.2 in [7].

5. COMPACTNESS.

For concepts and results on compactness and precompactness we refer to [6], [9].

THEOREM 5. I. The following are equivalent

(X,U(d)) is compact

2 (X,(d)) is precompact

3 (X,d) is totally bounded.

PROOF. The implications 1 => 2 => 3 are trivial. To show 3 => 1 let e I0.
If Y c X is a finite subset such that X U B(x,E) then we have inf d(x,t) < for

xeY xeY
all t e X which is equivalent to sup <x> > i which by Theorem 2.2 in [6] proves

xeY
our claim.

+REMARK 5.2. Since for any e e 0 we have that de is totally bounded if and only if

d is totally bounded, it follows from the foregoing result that either all spaces

(X,(d)) are compact or none of them is.

6. COMPLETENESS.

For concepts and results concerning completeness and completions we refer to [9].

The following result is an immediate consequence of Theorem 4.5 in [9] and Proposition

3.3.3

THEOREM 6.1. The following are equivalent

(X,d) is complete

2 (X,W(d)) is ultracomplete.

Given (X,d) we can now construct the following completions.

I. (,) the metric completion of (X,d)

II. (,U()) the ultracompletion of (X,(d))

III. (X Ud)) the ultracompletlon of (X,u(Ud))U
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Then we obtain the following collection of complete or ultracomplete spaces.

IV. The complete space (tu((d)))
V. The complete space (X (Ud)))U^ U

VI. The ultracomplete space (X,U()).
VII. The ultracomplete space (X,u(U)).
Now it follows from [9] that

(,u(U)) and (X,uiUd)) are isomorphic

2 (,U), (,tue(d)) and (X*, u(uUd))) are isomorphic

Using the methods of [9] it can be shown conceptually that the remaining spaces (,U())
and (,Ud)) are isomorphic too.

However, we prefer to explicitly describe the isomorphism which at the same time allows

us to describe the points of too.

Given the non-Archimedean space (X,d), its metric completion (,) can be considered

as the set of all equivalence classes of equivalent Cauchy sequences in X, equipped

with the metric defined by (,) nlim d(xn,yn ), where (Xn)n and (Yn)n are arbitrary

representatives of and respectively

The ultracompletion [9] of (X,U(d)) is given by (,U[d)), where is the set of all ml-

nimal hyper Cauchy prefilters on (X,U(d)), and where Ud) is the fuzzy uniformity gene-

rated by {}, this function being defined by

(Cl,C2) inf{El] EeC1
O C

2 U +}.

LEMMA 6.2. If (Xn)n is a Cauchy-sequence in (X,d), the sequence (<Xn>)n converges uni-

formly to a mapping () X I t llm #(t,xn) which depends only on the equivalence
n-

class of (Xn)n, and which has the following properties

a. sup (x)(t) I,
rex

b. () () <= ,
c. <y()> y().

PROOF. If t is the class of the constant sequence (tn=t)n, we know that

(’) nlim d(t,Xn is independent of the choice of (Xn)n e .
If e > 0 and n0 is chosen such that

p .> no, q no ffi> (Xp,Xq) I E,

then for x e X, p no q >. no either (X,Xp) < and then (X,Xq) (X,Xp), or

@(X,Xp) >. 1- and then also #(x,xq) I- , so in any case l#(x,xp)-(X,Xq) e, which

proves the uniform convergence. The property a follows by considering ()(Xn), and b

and c follow by standard verification.

It follows from the foregoing lemma, that the prefilter r() {()}~ ’() is a

minimal hyper Cauchy prefilter on (X,(d)), and so we obtain a mapping r .
LEMMA 6.3. If C is a hyper Cauchy prefllter on (X,U(d)) then there exists a Cauchy se-

quence (Xn)n in (X,d) such that
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a. n elq n := sup <Xk> e C;
k>.n

b. (Yn)n converges uniformly to y() e C, where is the equivalence class of (Xn)n;
c. n ]q n n <- + Pn where lim 0 0.

n n

PROOF. It follows from (HC3) that we can find a non-increasing sequence (Sn)n of

elements of C such that for all n elN

-nn 8n <_ + 2

By (HCl) we can find a sequence (Xn)n in X such that for all n e

-n-I2 & 8n(Xn)"
Since (8n)n is non-increasing it follows that

2 -n-2 <- 8n(Xn+l)
and consequently

2 -n-1 <- n(Xn) ^ n(Xn+l) #(Xn,Xn+I)
which shows (Xn)n is a Cauchy sequence.

Further by (I) and (2) we have that for all n el and x e X

(1)

(2)

Bk(X) 2
-k .< Bk(X) A (1-2"k-l) 2-k-1

<- Bk(X) A Bk(Xk) 2
-k-1

.< (Xk,k).

Thus it follows from (HC2) that for all n ]q

n := sup #<Xk> C.
kZn

Since (<Xn>)n converges uniformly to () the same is true for (n)n and thus again by

(HC2) we obtain that () 6.

Finally we still have that for all n and x,y X

sup (Xk,X) V #(Xm,Y)fn(X) A -n(y)
kn,m>-n

<* sup (Xk,X) ^ (Xm,Y) ^ ((Xk,Xm)+2-n-1
kn,m>-n

& (x,y) + 2-n-l.
We are now in a position to prove the isomorphism result.

THEOREM 6.4. The map

r (,u()) (,Ud))

is an isomorphism.

be repre-PROOF To see that r is into let x,y e X x and let (Xn)n and (Yn)n
sentatives of and respectively. Then there exists e > 0 and no e such that for

all p,q no d(x ,yq) which implies that for any p no we have (9)(Xp) & -P
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whereas lim ()(xn) I. Thus () # () and therefore r() # r().

To see that r is onto, take C e , and consider () as constructed in Lemmas 6.2 and

6.3. It then follows that r() c C, and so r() by minimality.

To show that r is an isomorphism it now suffices to show that d o (rr) . Since

r() ) we first have

d(r(),r()) sup ((()v()) (()v())(s,t)-,(s,t)).
s,tX

Using distributivity in

(()vC))(s) ^ (()v())(t)

the symmetry of , and the fact that () y() =< , we obtain

d(r(),r()) sup (()(s)v()(t)-(s,t))
s,tX

and from this it follows that in the end we have to show that for any pair of Cauchy

sequences (xn)n and (yn)n in (X,d) we have

lim d(xn,Yn) sup llm(d(s,t)-d(Xn,S)Vd(Yn,t)).
SteX n

From the ultrametric property we obtain

llm(d(s, t)-d(xn,s)vd(yn, t)
n-o

.< lim(d(Xn, Yn)Vd(Xn, s)d(Yn, t)-d(Xn, s)d(Yn, t)

lim(d(xn,Yn)-d(Xn,S)Vd(Yn,t)) V 0
n-

lim d(x ,ynn

IxxXwhile on the other hand since sup I is continuous if IXxX is equipped with the

uniform topology and I with the usual one, we have

sup lim(d(s,t)-d(Xn,S)Vd(Yn,t))
s,teX n

lim sup (d(s,t)-d(XnJS)Vd(Yn,t))
n s,teX

lim d(xn,Yn).
n

In order to describe the points of in more detail we have the next result.

THEOREM 6.5. The following are equivalent

is a minimal hyper Cauchy prefilter on (X,U(d))

2 where 8 fulfils

a. 8 % ,
b. <O> 8,

c. sup O 1;

3 is a prefilter with a basis {nln e} fulfilling
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<a. V n I Yn+l Yn
b. V n <yn> Yn
c. n q, 3 x X Yn(Xn)n

d. V n Yn Yn $ +pn where lim Pn =0.

PROOF. Since => 2 was proved in Theorem 6.4 and Lemma 6.2, while 2" => and

3 => 2 are obvious, it is sufficient to prove 2 => 3

We can repeat the construction in Lemma 6.3 with n 8 for all n I.

(n)n has the properties a, c and d by the construction in Lemma 6.3.

follows from

The sequence

As to b, this

<n>(X) sup n(t) V (t,x) sup sup(k(t)^(t,x))
tX reX kn

sup sup(k(t)A$(t,x)) sup <k>(X)
kn rex kn

sup Uk(X) n(X),
kn

where n <Xn>"

Since the minimal hyper Cauchy prefilter generated by {nln } is coarser than C it

coincides with C.

REMARK 6.6. A characterization of minimal Cauchy filters, probably belonging to the

folklore of the subject, and with a standard proof which we leave to the reader, is

given by the following ((X,d) is a pseudometric space) F is a minimal Cauchy filter

on (X,Ud) if and only if F is a filter having a basis (Bn)nl which is a non-increas-

ing chain of open balls Bn B(xn,rn) with the property~~nlim rn 0. An alternative me-

thod for proving the isomorphism of (,U[d)) and (X,U(d)) can be based on this and on

Theorem 6.5. Indeed, we consider as the set of minimal Cauchy filters on (X,d), and

the foregoing then allows a bijection between minimal hyper Cauchy prefilters on

(X,U(d)) and minimal Cauchy filters on (X,d).

7. CONNECTEDNESS

In [8] a number of connectedness concepts in G. Preuss’ sense have been introduced

and studied.

We recall that a space (X A) IFTSI is called 2 -connected if and only if there

does not exist a non-empty proper subset A c X such that {alA,aIX\A} c a and is called

D-connected if and only if it is 2a-connected for each a I0. For the meaning of the

notations 2 and D we refer to [8].

PROPOSITION 7.1. For a e I
0

and A e 2X\{@,X} the following are equivalent

{alA,alx\A} t((d))

2 d(A,X\A) > .
PROOF.

[8].

This follows by straightforward verification using e.g. Proposition 3.4.6.

The following is an immediate consequence.
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THEOREM 7.2. The following hold

10 (X,t(U(d))) is 2 -connected if and only if there exists no non-empty proper subset

A X such that d(A,X\A) ;

2 (X,t(U(d))) is D-connected if and only if there exists no non-empty proper subset of

A c X such that d(A,X\A) > 0.

8. CATEGORICAL CONSIDERATIONS

Let NA(1) stand for the category of non-Archlmedean pseudometrlc spaces (X,d) where

d <. and with morphisms l-Lipschltz or non-expanslve maps. We already know that the

functor

NA( > FUS

(X,d) > (X,II(d))

which leaves morphisms unaltered is a full embedding. Consequently we may consider

NA(1) to be a full subcategory of FUS. We shall now prove that NA(1) actually is a very

nice subcategory (see also [I]).

THEOREM 8.1. NA(1) is a bicoreflective subcategory of FUS.

PROOF. Given (X,I])e IFUSI put

hii(x,y) := inf v(x,y).

Obviously % o % , % is symmetric and x e X %(x,x) I. Thus {%} generates

a fuzzy uniformity ] Since d := 1 % clearly is a non-Archimedean pseudometrlc, we

moreover have U(). Since D it is also immediately clear that

i<x (x,o) (x,o)

is uniformly continuous. Now, given (Y,W) e INA(1)I and a uniformly continuous map

f (Y,W)--> (x,)

we can choose a non-Archimedean pseudometric d $ such that W {d} and it then fol-

lows that for all 9 e d $ 9 o (fxf) and thus also #d & o (fxf) which proves that

f (Y,W)--> (x,u)

if also uniformly continuous, m

REMARKS 8.2. I) In [15] it was shown that for (X,) e IFUS the TO-, TI-, and T2-
and 2 on (X,t()) are given byseparation functions 0’ i’ Zl

’(x,y) 2(x,y)= 1 inf v(x,y)0(x’y) Zl (x’y) Zl

Thus we simply have

=z2ZO i Zl d.
2) It is easily seen that NA(1) is not a reflective subcategory of FUS. If (Xj,l(dj))jej
is a non-finite collection in INA(1)I then their product is given by N Xj,l]) where

jeJ
is the fuzzy uniformity generated by
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and where SK is defined by

{$KIK J, K finite)

SK:(n Xj) n xj)--> I
jeJ jJ

((xj)j,(yj)j)--> inf Sdk(Xk,Yk).
Clearly, then

NA(1) is however closed for finite products in FUS.

9. DETERMINATION OF U(d) BY ITS LEVEL UNIFORMITIES

We recall [i0], [Ii] that a uniformity U on X is called non-Archimedean if there

exists a collection @ of partitions of X such that U p pip e } is a basis for U.
PeP

In the sequel, if P is a partition of X, we shall write P(x) for the member of P

that contains x e X.

PROPOSITION 9.1. =(Ud) is a non-Archlmedean uniformity on X generated by
U

:-- {P Ir > =}, where P := {B(x,r)Ix e X}.
r r

PROOF. Since P (x) B(x,r), we have P (x) P (x) {(y,z)13 x e X
r r r

d(x,y)Vd(x,z)<r} {(y,x)Id(y,z)<r D and it follows from Proposition 3.3.1 that
r

e(Ud)__ is non-Archimedean.
U,

The rest of the theorem is a reformulation in this particular case of well-known rela-

tions [12] between diagonal and covering uniformities and the fact that P < P if, r s
r < s and P P.

An immediate consequence of this is the next result.

PROPOSITION 9.2 There exists a family (P)= eII
condition

of partitions of X, satisfying the

<8">P <P

and such that u,((d)) is generated by the family

that

of coverings, i.e. such

is a basis for =(](d)).
But we also have the converse

u P PIS > }
Pep

THEOREM 9 3 If (P)= =eI is a family of partitions of X, satisfying the condition

a<8:> P < P (I)

then there is a non-Archimedean pseudometric d <. on X, such that for each = e I the

uniformity U generated by (Ps)B> is the c,-level-uniformity ((d)) of (d).
CZ U

PROOF. We first remark that by (i)

Pa(x) Pa(y) and a < 8 => Ps(x) Ps(y).
We can therefore define d X X I by
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d(x,y) := inf{alP=(x)=P=(y)} sup{aIP(x)’Pa(y)}

(with inf I, sup 0). Clearly d(x,x) 0 and d(x,y) d(y,x). Further, if

d(x,y) a’ a" d(x,z),

then for all > " we have P (z) Pa(x) Pa(y), and therefore d(y,z) & a". So d

is a non-Archimedean pseudometric, and we only have to prove that Ud u,=(U(d))"
First, if a < 8, we can take r such that a < r < 8. If then d(x,y) < r, we have

Ps(x) Ps(y), so (x,y) e U p p, and therefore D c U p p. From Proposi-

pep8
r pep

tion 9.2 it now follows that U P P e a,u(U(d)) whence U c =((d)) by at-

pep = u,

bitrariness of 8 > . Conversely, if = < r, we can take = < 8 < r and then

d(x,y) >. r => P(x) Ps(y) => (x,y) tJ p p,

so t3 p p c D whence D e U Again, by arbitrariness of r > =, we obtain
pep r r a

(U(d)) c U and so we are done.
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