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ABSTRACT. Closed and nowhere dense subsets which coincide with the points of

discontinuity of real-valued functions with a closed graph on spaces which are not

necessarily perfectly normal are investigated. Certain G subsets of completely

regular and normal spaces are characterized. It is also shown that there exists a

countable connected Urysohn space X with the property that no closed and nowhere

dense subset of X coincides with the points of discontinuity of a real-valued

function on X with a closed graph.
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1. INTRODUCTION.

Let X and Y denote topological spaces. Let R denote the real line with

the usual topology. All spaces will be assumed to be T 2. Let f be a function

from X into Y and denote the graph of f by G(f) {(x,f(x)) X x Ylx X}.
The graph of f is closed if G(f) is a closed subset of X x Y. Let

D(f) {x x[f is discontinuous at x}.
It was shown by Thompson [I] that if X is a Balre space and if a function

f:X + R has G(f) closed, then D(f) is a closed and nowhere dense subset of X.

It was proven by Dobbs [2] that, if X is perfectly normal, F C X is closed and of

first category in X if and only if there exists a function f:X + R such that

G(f) is closed and D(f) -F.

Let X be a topologlcal space which is not necessarily perfectly normal. In
this note we will investigate those closed and nowhere dense subsets of X which

coincide with the points of discontinuity of a real-valued function with a closed

graph on X. We will consider this problem when X is either a normal, a

completely regular, a regular or a Urysohn space.
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2. PRELIMINARIES. In what follows we will make use of the following known

results

THEOREM 2.1. Let X be a topological space. If f:X / R has a closed graph,

then D(f) is closed and of the first category in X (Dobbs [2]).

THEOREM 2.2. Let f:X Y be a function with a closed graph. If K is a
-I

compact subset of Y, then f (K) is a closed subset of X (Hamlett and

Herrington [3]).

PROPOSITION 2.3. If h:X + Y is a continuous function and if g:Y + Z is a

function with a closed graph, then f g h has a closed graph (Thompson

[ ]).

PROPOSITION 2.4. Let X be a completely regular topological space. If F is

a compact G subset of X, then there exists a continuous function f:X R such

that F- {x Xlf(x) O (Gillman and Jerlson [4], page 43).

If V is a closed subset of X, throughout and Vc will be used to denote

the closure of V and the complement of V, respectively. [a,b] will be used to

denote a closed interval in R.

3. X IS NORMAL. We will characterize closed and nowhere dense G
5

subsets of a

normal space X in terms of the points of discontinuity of a real-valued function

with a closed graph. We will first establish the following lemma.

LEMMA 3.1. Let F C X be closed and nowhere dense in X and let f:X / R be

a function with G(f) closed such that D(f) -F. If for each net {xsl= I} in

X F which converges to x F, {f(x)Is I} does not converge in R, then F is

G.
PROOF: Case (i). Suppose f is constant on F Let > O. For each

x X, let V(f(x)) denote an open interval in R of radius E and centered at

f(x). Select for each x F an open neighbourhood U(x) of x such that

f(U(x) -F)C [Vef(x)]c. (This is possible, for otherwise given VE(f(x)), there

would exist for each nelghbourhood U(x) of x an element YU [U(x) -F] such

that f(yu) VE(f(x)). This would imply YU / x and f(yu / f(x) which is

impossible.) Put U t3FU(x). Clearly F C U. Let x F and putx

v {If(x) -n, f(x)n -]u If(x) +, f(x) + hi}, n-

-1V is a compact subset of R for each n and, by Theorem 2.2, f (Vn) is closedn
-i

in X for each n. Put G [f (Vn)]C 63 U for n- 1 2,... Since f is
-i n

constant on F, F C [f (Vn)]C for each positive integer n. Let y U -F. It
I

follows that f(y) [f(x) -no, f(x) ] t [f(x) + 0 f(x) + no] for x F

and for some integer no Therefore y G and y 63 G C U. Sinceno n-I n

F C G for each n, it follows that F 63 G and F is G, since G is openn
nl n n

for each n.

Case (ii). Suppose f is not constant on F. Let xI F be fixed. Define

g:X + R by g(x) f(xI) if x F and g(x) f(x) otherwise. It follows that

G(E) is closed since G(f) is closed and g satisfies the hypothesis of the
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lemma. Now by Case (i), F is G and the lemma is established.

Hamlett and Herrington [3] gave an example (Example 1.6.1) to show that if X

is the space of all ordinals less than or equal to the first uncountable ordinal,

R, then there does not exist a function f:X R with a closed graph such that

D( {}.

THEOREM 3.2. Let X be a normal space and let F C X be closed and nowhere

dense in X. F is G6 if and only if there exists a function f:X / R such that

G(f) is closed, D(f) F and for every net {xls I} C X- F which converges to

x e F, {f(xa)la e I} does not converge in R.

PROOF: Sufficiency follows from the proceeding lemma. To show necessity

suppose F is G. It follows that there exists a continuous function h:X R

sch ha {x Xlh(x) O} - (urao., [], page 4). n : by

g(O) O, g(x) , otherwise. Put f- g h. It follows from Prosltlon 2.3

that the graph of f Is closed. Clearly f has the required properties.

In Example 4.1 it will be shown that ’normal’ cannot be replaced by ’completely

regular’ in Theorem 3.2. First we will establish two lemmas which will be used in

this example.

LEMMA 3.3. If f:X R has a closed graph and if x D(f), where D(f) is

nowhere dense in X, then there exists a net {xa]a I} C [D(f>] c such that

x, x and {(,)l" x} has no convergent subnet in R.

PROOF: Let x D(f). There exists some net {ya} in X such that Ya x

and f(y) has no convergent subnet in R. We may assume without loss of

generality that y= D(f) for all s and that If(ys)l > If(x) + I for all s.

For each open neighbourhood U of x, select Y(U) U and X(u) U [D(f)] c

such that If(X(U)) _> If(ys(u)) -c. Such an Xs(u) exists for each U and

each Ys(U) since Ys(U) D(f) which is nowhere dense in X, and, if ys(u)
8

is

any net in [D(f)] c
which converges to Y(U)’ then either f(ys(u)8) f(ys(u)) or

has no convergent subnet in R. Clearly x + x and f(x doesf(Y(u) (u) (u)

not converge to f(x), Since the graph of f is closed, it follows that f(x
(u)

has no convergent subnet in R.

LEMMA 3.4. Let f, g:X R be two functions with closed graphs. If there

exists a dense subset XI of X such that f lXl glXl, then D(f) -D(g).

PROOF: Suppose x D(f). By Lemma 3.3 there exists a net

{xeIs I} C [D(f)] c such that xs / x and f(xs) has no convergent subnet in R.

If {xla I} C X
1

then clearly x D(g). If {xla e I} C X [X1 U V(f>] D,

then D U D(f) is nowhere dense in X. It can be shown as in Lemma 3.3 that there

exists a net {x818 J} C [D U D(f)]cc X
1 such that x

8
x and f(xs) has no

convergent subnet in R. Since f(x8) g(x8) for all 8 e J, it follows that

x D(g).

4. X IS COMPLETELY REGULAR. Let C(X) and G(X) denote the families of all real

valued functions on X which are continuous and which have a closed graph,

respectively. Let (X) denote the family of all subsets of X. If A C X, let
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AI denote the cardinality of A. The next example shows that Theorem 3.2 does not

hold for completely regular spaces.

EXAMPLE 4.1: Let (X,T) denote the upper half of the euclidean plane (y > O)

R
2

with the tangent disc topology Namely, put p I( x y) Y > 0. Let

L I(x,y) R21y-- 0. Put X P t3 L. Let T be the topology on X such that

restricted to P is the usual euclidean topology. If x L and D is any open

disc in P tangent to L at x, then {x fJ D is an open set in X containing x

(Stein and Seeback [6], page i00). (X,) is completely regular and L is closed

and nowhere dense in (X,). I(L)I 2c, where c is the cardinality of the

continuum, and each F (L) is closed and nowhere dense in X. Let f,g G(X)

such that D(f) C L, D(g) C L and D(f) D(g). Since fl(X L) and gl(X L)

are both continuous, it follows from Lemma 3.4 that fl(X L) gl(X L). Since

IC(X- L) c, it follows that if /C (X) has that property that for every

M j there exists f G(X) such that D(f) --M, then lJ/l < c. Therefore, there

exists a family (L) such that II l(L)l and for every F there does

not exist a function f G(X) such that D(f) -F.

REMARK 4.2: Let X be a topological space and let L be a closed and nowhere

dense subset of X which is relatively discrete as a subspace of X. If

(L)l > IC(X- L)l it follows from Lemma 3.4 that there exists a family of

elements of L) such that II l)(L)l and for every F there does not

exist a function f G(X) such that D(f) -F.

The following results hold when X is completely regular.

THEOREM 4.3. Let X be a completely regular space and let F be a compact

G subset of X. There exists a function f:X + R with a closed graph such that

D(f) -F if and only if F is of first category in X.

PROOF: The necessity follows from Theorem 2.1. To show sufficiency, note that

if U is any open subset of F, U is of first category since F is of first

category. U is of second category since F is compact and hence a Baire space.

Therefore U and F is nowhere dense in X. Since F is compact G, there
-i

exists, by Lemma 2.4 a continuous function h:X R such that h (0) F. Let
I

g:R R be defined by g(x) , x O, and g(O) O. By Proposition 2.3, if

f g h, then f has a closed graph It follows that D(f) -F.

5. X IS REGULAR. It follows from Example 4.1 that the condition ’let F be

compact’ cannot be omitted in Theorem 4.3. Example 1.6.1 by Hamlett and Herrington

[3] shows that Theorem 4.3 does not hold if F is not G. It will be shown in

Example 5.2 that Theorem 4.3 does not hold in general for regular spaces. The

topology on the space presented in Example 5.2 will be a refinement of the topology

on a nice example of a regular space which is not completely regular that was

constructed by Thomas [7]. An outline of Thomas’ example follows. See [7] for

further details and a geometric interpretation.

EXAMPLE 5.1 (THOMAS): If n 0,+1,+2,+3,..., put L(2n)

R2 1/2t[(2n, y) I0 < y < If n 0,+I,+2,+_3,..., and k 2,3,4,..., put

R
2 1p(2n- l,k) i(2n- I, I -kI-) and put T(2n- i, k) [(2n- i + t,l t- )

R21t (0, i- ]. Let a and b be two points at ’infinity’. Put
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X U L(2n)} U U U [T(2n- l,k)U p(2n- l,k)]} U
n n--

Topologize X as follows. If x e T(2n- l,k) for n 0,+1,+2,..., and

k 2,3,..., then x is open. If x p(2n- l,k), then a nelghbourhood of x

contains all but finitely many points of T(2n-l,k). If x (2n,y) L(2n), then

a nelghbourhood of x consists of all but finitely many points of X with the same

y-coordlnate and with x-coordlnate that differs from 2n by less than I. If x a

and c is a real number, then a subset of X which consists of all points with

y-coordinate > c is an open set containing a. If x b and c is a real

number, then a subset of X which consists of all points with y-coordlnate <
an open set containing b. It was shown by Thomas [7] that X is regular and if

f:X R is continuous, then f(a) f(b).

Let (X,) be the space of Example 5.1. In the following example a topology

’ D will be constructed on X such that (X,’) is regular but not completely

regular. For the space (X,’) there will exist an x X such that {x} is G
but there will not exist a function f G(X) such that D(f)

EXAMPLE 5.2: Let (X,) be the space of Example 5.1. If x X and x a,

let the nelghbourhood base at x be as defined in Example 5.1. Let x a and let

A {xill 1,2,...}, where x
i

# a for all i, be a sequence in X which

converges to a in (X,). If for fixed i, x
i

is discrete in (X,), then put

S
i {xl}. If for fixed i, x

i
p(2n-l,k) for some n and k, put

S
i {xi} t} T(2n- l,k). If x

i (2n,YO) L(2n) for some i and n, then put

S
i {(X, Yo) Xl2n- I < x < 2n + I}. For each basic open nelghbourhood U of a

in (X,) and each sequence A converging to a in (X,) define U-
i-I

to be an open set containing a. Let ’ be the topology on X generated by

and by the new nelghbourhood base of a. Clearly ’ D and every open set V in

’ containing a contains T(2n- l,k) t) p(2n -l,k) for countably many n and

k. Also V contains all but countably many elements of t] L(2n). It follows

from the construction that (X,T’) is regular. (X,T’) is not completely regular

since it can be shown as in [7], that if f:(X,’) + R is continuous, f(a) f(b).

{a} is G. There does not exist a function g: (X,T’) + R with G(E) closed such

that D(g) {a}. For let g:(X,z’) + R be any function with a closed graph which

is continuous on X- {a}. It can be shown as by Thomas [7] that g(x) c, a

constant, for all but countably many elements of X {a}. Since a is a cluster

point of (X,’) but not of any sequence in (X,’), it follows that any net x
a

in X which converges to a in r’ has the property that g(x) / c. Since the

graph of g is closed it follows that g(a) -c and g is continuous at a.

Therefore Theorem 4.3 does not hold when X is regular.

6. X IS A URYSOHN SPACE. In this section it will be shown that there exists a

countable Urysohn space X (Example 6.3) with the property that if F is any

non-empty, closed and nowhere dense subset of X, there does not exist a function

f:X R such that G(f) is closed and D(f) F (Proposition 6.6). The space X will

be essentially the countable connected Urysohn space constructed by Roy [8].
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The following proposition will be useful later:

PROPOSITION 6.1. Let G be an open subset of a topological space X. If

G U F where the F’s are mutually disjoint, closed and nowhere dense in X,
n--2 n n

then there exists a function f:X R with G(f) closed and D(f) -G.

PROOF: Let F
0

X G and F
I G G. Define f:X / R by f(Fn) n, for n

0,1,2,... Since f is constant on X- G, f is continuous on X- G. Let

x G--. Since for n 1,2,3,... each F is closed and nowhere dense in X, there
n

exists a net {xl= I in G such that x= + x and Fn does not contain a

subnet of {xl I for each n. {x Is I ( Fn # for infinitely many

n’s, If(x)l I is unbounded and does not converge in R. Therefore f is not

continuous at x and D(f) -. For each x X and for each net Ix in X

which converges to x, it is easily seen that either f(x) f(x) or

{f(xa)la I} has no convergence subnet in R. Therefore G(f) is closed.

COROLLARY 6.2. Let X be a countable connected T
2 space. If G is an open

subset of X, then there exists a function f:X R such that G(f) is closed and

D(f) G.

PROOF: Follows immediately from the preceding proposition.

EXAMPLE 6.3: Let .|Cnn’+ be a countable collection of pairwise disjoint

subsets of the rational numbers indexed by the set of positive and negative integers

such that C is dense in R for each n. Let X {(x,n) Ix Cn,n
n 0,+I,+2,...} U {m}. We may visualize X as being ’lines’ in the plane through

y 0,+1,+2,+3,..., together with a point at ’infinity’, m. For each p X,

define a neighbourhood system for p as follows. Let p (s,n) X and let

g > O. If n is even or zero, put N (p) {(x,y) e Xl n, x C and
c y

s- c < x < s + }. If n is odd put N (p) {(x,y) Xly- n, n + 1 or n- 1,

x C and s s < x < s + }. If p m, put No(p) {(x,y) X]y > }. Let T
Y

be the topology generated on X by the neighbourhood system defined above for all

> O. (X,T) is essentially the space constructed by P. Roy [8]. (X,) is a

countable connected Urysohn space.

Let F be a closed and nowhere dense subset of X. It wlll be established in

Proposition 6.6 that if there exists a function f:X / R such that D(f) F, then

F #. Note that since F is nowhere dense in X, F (3 C2n is a nowhere dense

subset of I N C2n for each integer n and every interval I C R. Also, for each

n, C2n_l is closed and nowhere dense in X. In what follows Vc(f(x)) denotes an

open neighbourhood of f(x) of radius s in R.

PROPOSITION 6.4. Let (X,) be the space of Example 6.3, let F C X be

closed and nowhere dense and let f:X / R be a function with G(f) closed. If

D(f) F, then for every integer n and for every open interval I C R, f

restricted to the subspace I ( C2n_l is discontinuous on at most a nowhere dense

subset of I ( C2n_I with the relative topology.

PROOF: Suppose on the contrary that for some n and some open interval

I I C R, f l(lI. N C2n_l) is discontinuous on a dense subset of the subspace
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I
1
N C2n_l. Since D(f) is nowhere dense in X, we may select x I

1
N C2n such

that f is continuous at x. Let e > 0, choose > 0 such that

N(x) C (I I C2n and f(N(x)) C V(f(x)). Select s I I C2n_l such that

flll C2n_l is discontinuous at s and such that every neighbourhood U(s) of s

in (X,T) has the property that U(s) C2nC N(x) for sufficiently small

nelghbourhoods of s. Since f l(l I C2n_l) is discontinuous at s, there exists a

sequence Sklk- 1,2,...) such that s
k

I
1 C2n_l for all k, s

k
/ s, and,

since G(f) is closed, {f(Sk)Ik- 1,2,...) has no limit point in R. Select

Sm {Sklk- 1,2,...} such that f(Sm V(f(x)). Then there exists a sequence

{xnln 1,2,...} C N(x) where Xn + Sm and {f(xn) In 1,2,...} converges to a

point p VE(f(x)). Clearly p @ f(Sm). This contradicts the fact that the

graph of f is closed. Therefore f (I N C2n_l) is discontinuous on at most a

nowhere dense subset of I C2n_l for every open interval I C R and every

integer n.

PROPOSITION 6.5. Let (X,T) be the space of Example 6.3, let F C X be

closed and nowhere dense and let f:X + R be a function with G(f) closed. If

(f) -F, then for each integer n and for each open interval I C R there exists

a subinterval 12n_l C I such that f is continuous at x for each

x 12n_I N C2n_I.
PROOF: Let I be an open interval in R. For each integer n, there exists,

by Proposition 6.4, an open interval 12n_l C I such that fl(12n_l N C2n_l) is

continuous on the subspace 12n_l C2n_l with the relative topology. Since F is

nowhere dense in I C2n and I C2n_2 for each integer n, we may assume

without loss of generality that 12n_l has been chosen for each n such that f

is continuous at each point of (12n_l C2n)t) (12n_l N C2n_2).
Let x 12n_l C2n_l and let IXnln 1,2,...) be a sequence in X which

converges to x. We may assume without loss of generality that {x In 1 2,...
is eventually in either 12n_l C2n_l or 12n_l N C2n or 12n_l C2n_2. If

{x In 1,2,...) is eventually in 12n_l C2n_l then it follows from the way
n

12n_l was selected that f(xn) / f(x). Suppose {XnJn 1,2,...} is eventually in

12n_l N C2n. Let > O. Since f is continuous on 12n_l C2n, for each

y 12n_l C2n there exists a > 0 such that f(N(y)) C V (f(y)). Select some

y e 12n_l C2n such that for all sufficiently small nelghbourhoods N(x) of x,

N(x) C2nC N(y). {Xnln- 1,2,...) will eventually be in N(y). Since

f(N(y)) C VE(f(y)), it follows that {f(Xn) In- 1,2,...) is eventually in

V (f(y)) and we may assume that f(Xn) In 1 2,...) converges. Since the graph

of f is closed f(xn)+ f(x). Similarly it follows that if {Xn In 1,2,...} is

eventually in I2n_l N C2n_2 f(Xn) + f(x). Therefore f is continuous at x for

each x e 12n_1 C2n_I.
PROPOSITION 6.6. Let (X,) be the space of Example 6.3, let F C X be

closed and nowhere dense and let f:X / R be a function with G(f) closed. If

D(f) F, then F #.

PROOF: Suppose F is a non-empty, closed and nowhere dense subset of X and

that there exists a function f:X / R with G(f) closed such that D(f) F. If
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f is constant on X- F, it follows that f is constant on X and hence

continuous on X. We may assume therefore that f is not constant on X -F. Let

y X -F and let > 0 such that f() V(fy)). Since f is continuous at

y there exists a > 0 and a neighbourhood N6(y) of y such that

f(N(y)) C V(f(y)). We may assume without loss of generality that

N6(y C (I N C2n_l) U (I N C2n t) (I C2n_2 for some interval I C R and some

integer n. It now follows from repeated applications of Proposition 6.5 and the

definition of open sets in (X,T) that for each m > 2n, there exists an interval

Im C I such that f(l
m Cm) C V (f(y)). For each m > 2n, select Ym (Ira Cm)"

Then Ym and f(ym V(f(y)), for m 2n + I, 2n + 2,... Since

f() V (f(y)) this would contradict the fact that the graph of f is closed.

The proposition follows.

In contrast to the results of Dobbs [2] and Thompson [I] for perfectly normal

spaces, it now follows that if X satisfies only the Urysohn separation axiom it is

possible that there may exist a function f:X R with a closed graph such that

D(f) F if and only if F is a closed subset of X with a non-empty interior.

That this is true for the space given in Example 6.3 follows immediately from

Proposition 6.6 and Corollary 6.2.

REMARK 6.7: Proposition 6.6 does not hold for all countable connected Urysohn

spaces although it does hold for the countable connected spaces constructed by

Kannan [9] and Martin [I0]. It is possible to redefine the topology on the space in

Example 6.3 such that the space remains connected and Urysohn and F C I CO C_I
is closed and nowhere dense and there does exist a function f:X R such that

G(f) is closed and D(f) --F.
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