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ABSTRACT. Let F
t

be the set of all positive integers n such that Jr(n) < Jt(m) for

all m > n, Jt(n) being the Jordan totient function of order t. In this paper, it

as been proved that (I) every postive integer d divides infinitely many members of
nF

t
(2) if n and n’ are consecutive members of Ft, as n in F

t
(3) every

prime p divides n for all sufficiently large n g F
t
and (4) Log Ft(x) << log x where

Ft(x) is the number of n g F
t

that n x.
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I. INTRODUCTION.

In [I] Masser and Shlu consider the set F of positive integers n such that

(n) < (m) for all m > n, (n) being the Euler totlent function. Calling members

of F sparsely totient numbers, they prove, among other results, that (I) every

integer divides some member of F (2) every prime divides all sufficiently large

members of F (3) the ratio of consecutive members of F approaches and

(4) log F(x) << log1/2x where F(x) is the counting function of F; that is, the number of

members of F which do not exceed x.

In this paper, using similar methods, we extend the above results to the set F
t

of all positive integers n such that Jt(n) < Jt(m) for all m > n, Jr(n) being the

well known Jordan totlent function of order t [4]. We recall that Jr(n) is defined

as the number of incongruent t-vectors (a a
t

mod n such that ((a at)n) I,

it being understood that t-vectors (a I, at) and (b b t) are congruent mod n

if a
i bi(mod n) for g i g t and that Jt(n) is given by the formula

t -t)Jt(n) n (I p (I.I)

Moreover this function Jt(n) coincides with Cohen’s [3] generalization @t(n) of the
tEuler totient function, defines as the number of positive integers a n such that
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t
where (x,y)

t
denotes the largest t th power common divisor of x and y.(a,n)

t
Clearly Jl(n) (and hence l(n)) is the same as (n).

Denoting by (n) the number of distinct prime factors of n, we order these prime

factors as P1 > P2 > > P (n)" thus Pr Pr(n) is the r th largest prime factor of

n. Likewise we order the primes not dividing n as Q1 < Q2 < Further we write

Pr for the r th prime in the ascending sequence of all primes. For positive integral

n, we write n, to denote the quotient of n by its largest square free divisor. For a

positive integer u, we write a for the unique positive root of the equation

t
t x

t+u + (t+u) x u 0. (1.2)

It may be directly verified that

2u =< a < (1.3)
t+u u

Finally we write Ft(x) for the number of members of F
t

that do not exceed x.

2. MAIN RESULTS.

We prove the following results:

THEOREM 2.1. Let k 2, d I, 0 be integers such that

and

d < Pk+l (2.1)

d
t t
(Pk+ 1) < (d+l)t(p I). (2.2)

Then d PI’’" Pk-lPk+ is a member of Ft-
COROLLARY .1. Every positive integer d divides infinitely many members of Ft.-I

nCOROLLARY 2.2. If n and n’ are consecutive members of Ft, then n as

n in Ft-
THEOREM 2.2. Every prime p divides n for all sufficiently large n Ft-
THEOREM 2.3. Let u be a fixed positive integer. As n in F

t
we have

(a) lim inf P (n) log-In
u

(b) lim sup Pl(n) log-ln 2

(c) au llm inf Qu(n) log-In llm sup (n) log-In
n n

(d) llm sup Pt+u(n) log-ln au-I
n

and

(e)

(2.3)

(2.4)

lim sup Pl(n) log-t-In S t (2.5)
n

THEOREM 2.4. log Ft(x) << logx.
3. FOR THE PROOFS OF THE THEOREMS WE NEED THE FOLLOWING LEMMAS.

LEMMA 3.1. Let r be a positive integer and Xl,...,Xr, YI’’’’’Yr’ x and y be real

numbers satisfying (i) x
i Yi and y x

i
for i r and

(ii) Xl’’’Xr x < yl...yr y" Then (Xl-l) (xr-l)(x-l) < (Yl-l)...(Yr-l)(y-l).
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This is lemma 3.1 of [6].

For positive integers a and b we write f(a,b) to denote the smallest multiple of b

that exceeds a. Clearly

a < f(a,b) _-< a + b. (3.1)

LEMMA 3.2. If n e F
t

and

Pl Pk n < Pl Pk Pk+l (3.2)

then k-2t < re(n) k.

PROOF. The second inequality in (3.2) implies that m(n) -< k. Suppose if

possible, that 0 < m(n) k- 2t. It follows from (I.I) that

i-t) -tJt(n)m-t (I p (I Pk_2t (3.3)

Choosing m f(n, Pl Pk-t )’ we have, by (3.1) and (3.2),

Pl" "Pk-t< m <_-I + + < +
n n Pk-t+l" "Pk Pk-t

(3.4)

On the other hand, since Pl Pk-t divide m, we have, in virtue of (3.3),

-t -t -t
Jt(m)m -<- (l-Pl (l-pk-t)

-<- Jt(n)n-t (l-Pk-t2t+l) (l-Pk-t)

=< Jt (n)n-t (l-pk-tt) t

so that, (3.4) now yields

Jt (m)
-t -t t

Jt(n)
< (I + Pk_t) (I Pk_t) <

contrary to the hypothesis that n e F
t

Hence the lemma follows.

REMARK I. Since for each n there is a unique k such that (3.2) holds, lemma 3.2

implies that m(n) as n in F
t

LEMMA 3.3. If u is a positive integer, n e F
t
and m(n) t + u then eu Pt+u< Qu"

-I
PROOF. We write a PI Pt+u’ b QI Qu and m na f(a,b) so that

+ b + u p-t-u (3.5)
n Qu t+u

Since Q1 Qu are prime factors of m but not of n where as the prime factors

PI Pt+u of n may or may not divide m, we have

-i l-p-t -I
I--t

-I
J

-t
Jt(m)m (l-Qlt) (l-Qut)( 1 t+n) t(n)n

so that (3.5) and the hypothesis that n F
t

together imply

< Jt(m)(Jt(n))-I < (l+QUuP-t-u.t+u u (l-Qi
t- t+u (l-p?t)

-I

i=l i=l

< (l+Qu
u p-t-u, t -t u -t -t-u

t+u (I- Qu (I -Pt+u
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Taking (t + u) th roots and employing the well known inequality x
r <- + r(x-l)

for x > 0, 0 < r < I, we obtain

<  I-Q: 1+Q.U

< l-uQt (t+u)-I l+tQu
u Pt+u-t-u (t+u)-I)

-t -I u -t-u (tdm)-I< l-uQ
u

(t+u) + tQu Pt+u

Cancelling in the above and multiplying by (t+u)Q we arrive at

-I t+u -I t
t(Qu Pt+u + (t+u) (Qu Pt+u u > 0

-I >which, in virtue of (1.2), implies that Qu Pt+u u
REMARK 2. When t u this lemma 4 of [I] and when t this yields a

slight improvement of lemma 7 of [I].

LEMMA 3.4. For n e F
t
we have Pl(n) < t(Ql(n))t+l.

PROOF. We write P for Pl(n) and Q for Ql(n)" Suppose P -> t Q
t+-+

choosing
-I

m n f(P,Q)P we see that

+_=_<o +__l
n tQt

Arguing as in lemma 3,3, we have, since P Qt+l by our assumption,

Jt (m)m-t < (1-Q-t) l-p-t)-I Jt (n)n-t
-t(l_Q-t)(l_Q-t(t+l)) Jt(n)n

_t2 -I -t(l+Q-t + + Q Jt(n)n

(3.6)

so that by (3.6)

Jt (m) (Jt (n) )-I .< (l+Q-t + + Q-t2)-I (l+t-IQ-t)t .< I,

contrary to the hypothesis. This establishes the lemma.
t+lLEMMA 3.5. For n Ft, n, < t(Ql(n))

PROOF. Writing m n f (n,,Q)n, we note that

<m<= +Q
n n,

so that, since n e Ft,
t

exp(O) Jt(m)(Jt(n))-I <= (l-Q-t)(l+Qn, I)

< exp (-Q-t)exp(tQn, I).

The lemma follows on comparing the exponents.

LEMMA 3.6. Let A > 0, M > 3 and (A;M) be the number of primes p with

A < p A+M ((A;M) (A+M) w(A)).
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Then

(A;M) <- 2M(log M) -I {i + 0 (log log M log-IM)}

and the 0-constant is independent of A.

This is Theorem 4.5, Chapter 19 of [2].

REMARK 3. Lemma 3.6 implies that (A;M) 3M log M for all A 0 and

sufficiently large M.

4. PROOFS OF THEOREMS.

PROOF OF THEOREM 2.1. Let n d pl...Pk_l Pk+ where d,k, satisfy (2.1) and

(2.2). From (I.I) and (2.2) we have

t (t tJt (n) <= dt (Pl -I) Pk_l)(Pk+ -I)

t t
I) (pkt-I< (d+t)t(pl-I) (Pk-l- (4 I)

Let m > n. There is a unique s such that Pl Ps & m < Pl Ps+l and the last

inequality implies that m(m) s. Hence

-t -tJt(m) -> m
t

(l-Pl (l-ps

t_l t-I>- (Pl (Ps (4.2)

Case (I) s-> k+l. We have, by (4.2),

(plt_l tJr(m) -> (pkt-l)(Pk+l-l)
t t t> (Pl-l) (Pk-l)(d+l) by (2.1)

"> Jt(n) by (4.1)

Case (2) s <= k, (m) .< k-l. In this case

-t) -tJt(m)m-t (l-Pl (I Pk-I

where as

Jt (n)n-S -t -t(l-pt) (l-Pk_I) (l-Pk+)
--t(1-plt) (l-Pk_I)

so that Jt(m) > Jr(n)"
Case (3) s k m(m) and m, => d+l. In this case s k (m) and

t
Jt(m) m, (pt-l)

t t tm, (Pl-l) (Pk-l)
t t__> (d+l) t

(Pl-l) (Pk-l)
> Jt (n)
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in virtue of (4.1).

Case (4) s -< k (m) and m, =< d. Let m m, ql qk’ ql ’s being the

distinct prime factors of m in ascending order. Then ql "> Pl and since m > n we have

-I
ql qk-I qk > Pl Pk-I (d Pk+g m,

d
t t -t

in lemma 3 we obtainTaking r k-l, Yl q y q x
i p and x Pk+gm*

t t t (p-l) (P-I I) (d Pk+ m,-I)(ql_l) (qk_l)(qk_l) > t t -t

so that

(Pk_l-l) (d pk+-m,

dt t t t> (Pl-l) (Pk_l-l)(Pk+-I)

"> Jt (n)

by (4.1). This completes the proof of Theorem 2.1.

PROOF OF COROLLARY 2.1. Let d be any positive integer. For each k 2 such

that (2.1) holds, we can take 0 so that (2.2) holds. Thus d Pl Pk Ft for

each k 2 such that Pk+l > d+l.

As the proof of Corollary 2.2 is essentially the same as that of the Corollary

given in section 3 of [I], we omit it.

PROOF OF THEOREM 2.2. Let p be a given prime. Choosing r such that
-I

Pr > pal we see that (n) E r + t + for all n in F
t

such that n Pl Pr+3t
in virtue of lemma 2. For such n we have

-I> alPt+l Pr P

so that

QI > Ul Pt+l > p

in virtue of lemma 3.3 (u I), yielding that pln.
REMARK I. Though this theorem follows immediately from Theorem 2.3 a direct

proof seems desirable.

PROOF OF THEOREM 2.3. (a) For any n e Ft, there is a unique integer k satisfying

Pl Pk n < Pl Pk+l (4.3)

By lemma 3.2, (n) >- k 2t + so that, for a fixed integer u,

Pu(n) P-u+l ffi> Pk-2t-u+2 log n as n in F
t

slnce, by the prime numbers theorem

(e(x) x),

and

Pk log (Pl Pk log n

Pk-2t-u+2 Pk as k (hence as n in Ft).
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p (n)
Thus lim inf

u >- 1. On the other hand, considering members n of F
t

of the form

n log n

P Pk (take d l, 0 in theorem 2.1), we have

P (n) P (n) --Pk" log n
u

as n through such members of F
t

Hence

P (n)
u

lim inf I.
log n

(b) For k -> 2, >- 0 theorem 2.1 (with d I) says that

t < 2
t (p-l) + => Pl Pk-I Pk+ Ft"Pk+

choosing to be the largest subject to the above condition we have

t > 2
t t t

Pk+ +I (Pk-l) + > Pk+ (4.4)

so that

Pk++l < 2(Pk-1) 2 log n

where n- Pl Pk-lPk+ since n satisfies (4.3) in virtue of (4.4).

Now Pl(n) Pk+ Pk++l and this yields

p1(n)
lim sup Io= n

>- 2

(c) Since, by lemma 3.3, Qu > au Pt+u we have, from (a)

Qu (n)
lira inf -> a

u
n log n

On the other hand, choosing k as in (4.3) we see that QI <= Pk+l and hence Qu < Pk+u
for all n in Ft, where as, for members of F

t
of the form P Pk we have Qu Pk+u*

Since Pk+u Pk log n we have

Qu (n)
lira sup log n

i.
n

(d) and (e) now follow by applying lemmas 3 and 4 respectively.

PROOF. OF THEOREM 2.4. We write G(x) Ft(x) Ft() number of members n of
x

F
t

satisfying < n -< x and show that log G(x) log1/2x from which the theorem follows

easily. Throughout the proof we assume that x is a sufficiently large positive real

number. We write

u [logx (log log x) -I] t (4.5)

x 4
log n by (2.3)and note that t+u _-> 2

t + 2t. For n e Ft, n > we have Ql(n) i
Putting Q1 P+I and noting that + -> _3 ZQl(n)

by the prime number theorem
4 log Q1 (n)

we conclude that
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flog n log}x
2
t> >t+u +2t.log log n log log x

Each n is specified uniquely when n, and the prime factors of n are given. We

estimate an upperbound for G(x) by estimating upper bounds for the number of choices,
x

consistent with n F
t (, x], for each of (a) n, (b) the largest t+u prime factors

of n, namely Pl’’’’’Pt+u (c) the prime factors of n that are less that au Pt+u and

(d) the prime factors of n that lie in [au Pt+u’ Pt+u)"
(a) By lemma 3.5 and (2.3) the number of cholcesfor n, does not exceed

t+l t+l
t (2 log x) and hence does not exceed (2 t log x)

t+l(b) Pi "< PI <" 2t (log x) for -< i <- t+u in virtue of (1.8) so that the

number of choices for P1 Pt+u does not exceed (2t log x)(t+l)(t+u).
(c) Each choice of QI’ Qu gives rise to exactly one choice of the prime

factors of n that are < a P and each choice of these prime factors gives rise
u t+u

to at least one choice for QI’""Qu since au Pt+u < Qu and all primes in

(I, au Pt+u {QI Qu divide n. If P1 Pr then r < Pr P" "< 2t logt+Ix,
<- < (r+) 2 (3t lolgt+Ix) z so that theQ1 "< Pr+l and Qu "< Pr+u" Hence Qi Pr+u

number of choices for Q1 ’Qu and hence for the prime factors of n in (l,auPt+u)
does not exceed (3t logt+Ix) 2u.

(d) Let M Pt+u u Pt+u and note that

-IM (I u Pt+u <" 2t(t+u) Pt+u
-I -I-< 3t(t) a log x

u

< 4t a -1 log1/2x log log x
U

in virtue of (1.3), (2.4) and (4.5) respectively. Hence, by remark 3 following

lemma 3.6, the number of primes in [au Pt+u’Pt+u does not exceed 24t au-I log1/2x and

consequently the number of choices for the prime factors of n that lle in this

24tu-llog
interval does not exceed 2 x.

3 (t+u) (t+l)
Combining the estimates (a) through (d) we obtain G(x) (3t log x)

exp (24 t a -1 logx log 2) from which the desired order estimate follows in virtue
U

of (4.5).

It would be interesting to investigate whether results of this nature are

available for more general totients; e.g. totients with respect to a polynomial [3]

and with respect to a set of polynomials [4], introduced by the first author.
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