ON INTEGERS n WITH $J_t(n) < J_t(m)$ For m > n

J. CHIDAMBARASWAMY and P.V. KRISHNAIAH

Department of Mathematics University of Toledo Toledo, OH 43606

(Received April 10, 1987)

ABSTRACT. Let F_t be the set of all positive integers n such that $J_t(n) < J_t(m)$ for all m > n, $J_t(n)$ being the Jordan totient function of order t. In this paper, it has been proved that (1) every postive integer d divides infinitely many members of F_t (2) if n and n' are consecutive members of F_t , $\frac{n}{n!} + 1$ as $n + \infty$ in F_t (3) every prime p divides n for all sufficiently large n ε F_t and (4) Log $F_t(x) \ll \log^2 x$ where $F_t(x)$ is the number of n ε F_t that $n \le x$.

KEYS WORDS AND PHRASES. Euler totient function, Jordan totient function of order t. 1980 AMS SUBJECT CLASSIFICATION CODE. 11A,N.

1. INTRODUCTION.

In [1] Masser and Shiu consider the set F of positive integers n such that $\phi(n) < \phi(m)$ for all m > n, (n) being the Euler totient function. Calling members of F sparsely totient numbers, they prove, among other results, that (1) every integer divides some member of F (2) every prime divides all sufficiently large members of F (3) the ratio of consecutive members of F approaches 1 and (4) log $F(x) \ll \log^{\frac{1}{2}}x$ where F(x) is the counting function of F; that is, the number of members of F which do not exceed x.

In this paper, using similar methods, we extend the above results to the set F_t of all positive integers n such that $J_t(n) < J_t(m)$ for all m > n, $J_t(n)$ being the well known Jordan totient function of order t [4]. We recall that $J_t(n)$ is defined as the number of incongruent t-vectors (a_1, \ldots, a_t) mod n such that $((a_1, \ldots, a_t)n) = 1$, it being understood that t-vectors (a_1, \ldots, a_t) and (b_1, \ldots, b_t) are congruent mod n if $a_i \equiv b_i \pmod{n}$ for $1 \leq i \leq t$ and that $J_t(n)$ is given by the formula

$$J_{t}(n) = n^{t} \pi (1 - p^{-t})$$
(1.1)

Moreover this function $J_t(n)$ coincides with Cohen's [3] generalization $\phi_t(n)$ of the Euler totient function, defines as the number of positive integers $a \le n^t$ such that

 $(a,n^{t})_{t} = 1$ where $(x,y)_{t}$ denotes the largest t th power common divisor of x and y. Clearly $J_{1}(n)$ (and hence $\phi_{1}(n)$) is the same as $\phi(n)$.

Denoting by w(n) the number of distinct prime factors of n, we order these prime factors as $P_1 > P_2 > \ldots > P_{(n)}$; thus $P_r = P_r(n)$ is the r th largest prime factor of n. Likewise we order the primes not dividing n as $Q_1 < Q_2 < \ldots$. Further we write P_r for the r th prime in the ascending sequence of all primes. For positive integral n, we write n_{\star} to denote the quotient of n by its largest square free divisor. For a positive integer u, we write α_u for the unique positive root of the equation

$$t x^{t+u} + (t+u) x^{t} - u = 0.$$
 (1.2)

It may be directly verified that

$$1 - \frac{2u}{t+u} \leq \alpha_{u} < 1 \tag{1.3}$$

Finally we write $F_t(x)$ for the number of members of F_t that do not exceed x. 2. MAIN RESULTS.

We prove the following results:

THEOREM 2.1. Let $k \ge 2$, $d \ge 1$, $\ell \ge 0$ be integers such that

$$d < p_{k+1} - 1$$
 (2.1)

and

$$d^{t}(p_{k+\ell}^{t} - 1) < (d+1)^{t}(p_{k}^{t} - 1).$$
 (2.2)

Then d $p_1 \dots p_{k-1} p_{k+1}$ is a member of F_t . COROLLARY 2.1. Every positive integer d divides infinitely many members of F_t . COROLLARY 2.2. If n and n' are consecutive members of F_t , then $n^{-1}n' \neq 1$ as

 $n \rightarrow \infty \text{ in } F_t.$

THEOREM 2.2. Every prime p divides n for all sufficiently large n ε F_t. THEOREM 2.3. Let u be a fixed positive integer. As n + ∞ in F_t we have

(a)
$$\liminf_{n \to u} P_u(n) \log^{-1} n =$$

(b)
$$\lim_{n \to \infty} \sup P_1(n) \log^{-1} n \ge 2$$

(c)
$$\alpha_u \leq \liminf_n Q_u(n) \log^{-1} n \leq \limsup_n Q_u(n) \log^{-1} n = 1$$
 (2.3)

(d)
$$\limsup_{n} P_{t+u}(n) \log^{-1} n \le \alpha_{u}^{-1}$$
 (2.4)

and

(e)
$$\limsup_{n} P_{1}(n) \log^{-t-1} n \leq t$$
 (2.5)

THEOREM 2.4. $\log F_{t}(x) \ll \log^{2} x$.

3. FOR THE PROOFS OF THE THEOREMS WE NEED THE FOLLOWING LEMMAS.

1

LEMMA 3.1. Let r be a positive integer and $x_1, \ldots, x_r, y_1, \ldots, y_r$, x and y be real numbers satisfying (i) $1 \le x_i \le y_i$ and $y \ge x_i$ for $i = 1, \ldots, r$ and (ii) $x_1 \ldots x_r x < y_1 \ldots y_r y$. Then $(x_1-1) \ldots (x_r-1)(x-1) < (y_1-1) \ldots (y_r-1)(y-1)$. This is lemma 3.1 of [6]. For positive integers a and b we write f(a,b) to denote the smallest multiple of b that exceeds a. Clearly

$$\mathbf{a} < \mathbf{f}(\mathbf{a}, \mathbf{b}) \leq \mathbf{a} + \mathbf{b}. \tag{3.1}$$

LEMMA 3.2. If $n \in F_t$ and

$$p_1 \cdots p_k \leq n < p_1 \cdots p_k p_{k+1}$$
 (3.2)

then k-2t < $\omega(n) \leq k$.

PROOF. The second inequality in (3.2) implies that $\omega(n) \leq k$. Suppose if possible, that $0 < \omega(n) \leq k - 2t$. It follows from (1.1) that

$$J_t(n)m^{-t} \ge (1 - p_1^{-t}) \dots (1 - p_{k-2t}^{-t})$$
 (3.3)

Choosing $m = f(n, p_1 ... p_{k-t})$, we have, by (3.1) and (3.2),

$$1 < \frac{m}{n} \le 1 + \frac{p_1 \cdots p_{k-t}}{n} \le 1 + \frac{1}{p_{k-t+1} \cdots p_k} < 1 + \frac{1}{p_{k-t}}$$
 (3.4)

On the other hand, since p_1, \ldots, p_{k-t} divide m, we have, in virtue of (3.3),

$$J_{t}(m)m^{-t} \leq (1-p_{1}^{-t}) \dots (1-p_{k-t}^{-t})$$
$$\leq J_{t}(n)n^{-t} (1-p_{k-2t+1}^{-t}) \dots (1-p_{k-t}^{-t})$$
$$\leq J_{t}(n)n^{-t} (1-p_{k-t}^{-t})^{t}$$

so that, (3.4) now yields

$$\frac{J_{t}(m)}{J_{t}(n)} < (1 + p_{k-t}^{-t}) (1 - p_{k-t}^{-t})^{t} < 1$$

contrary to the hypothesis that n ϵ F $_t.$ Hence the lemma follows.

REMARK 1. Since for each n there is a unique k such that (3.2) holds, lemma 3.2 implies that $\omega(n) \neq \infty$ as $n \neq \infty$ in F_+ .

LEMMA 3.3. If u is a positive integer, $n \in F_t$ and $\omega(n) \ge t + u$ then $\alpha_u P_{t+u} < Q_u$. PROOF. We write $a = P_1 \dots P_{t+u}$, $b = Q_1 \dots Q_u$ and $m = na^{-1}f(a,b)$ so that

$$1 \quad \frac{m}{n} \quad 1 + \frac{b}{a} \quad 1 + Q_{u}^{u} \quad P_{t+u}^{-t-u} \quad . \tag{3.5}$$

Since Q_1, \ldots, Q_u are prime factors of m but not of n where as the prime factors P_1, \ldots, P_{t+1} of n may or may not divide m, we have

$$J_{t}(m)m^{-1}$$
 $(1-Q_{1}^{-t})$... $(1-Q_{u}^{-t})(1-P_{1}^{-t})^{-1}$... $(1-P_{t+n}^{-t})^{-1} J_{t}(n)n^{-t}$

so that (3.5) and the hypothesis that n F_t together imply

$$1 < J_{t}(m) (J_{t}(n))^{-1} < (1+Q_{u}^{u} P_{t+u}^{-t-u}) \overset{u}{\underset{i=1}{\pi}} (1-Q_{i}^{-t}) \overset{t+u}{\underset{i=1}{\pi}} (1-P_{1}^{-t})^{-1} < (1+Q_{u}^{u} P_{t+u}^{-t-u})^{t} (1-Q_{u}^{-t})^{u} (1-P_{t+u}^{-t})^{-t-u}$$

Taking (t + u) th roots and employing the well known inequality $x^r \le 1 + r(x-1)$ for x > 0, 0 < r < 1, we obtain

$$1-P_{t+u}^{-t} < (1-Q_{u}^{-t})^{u/t+u} (1+Q_{u}^{u} P_{t+u}^{-t-u})^{t/t+u}$$

$$< \{1-uQ_{u}^{-t}(t+u)^{-1}\} \quad \{1+tQ_{u}^{u} P_{t+u}^{-t-u} (t+u)^{-1}\}$$

$$< 1-uQ_{u}^{-t}(t+u)^{-1} + tQ_{u}^{u} P_{t+u}^{-t-u} (t+u)^{-1}.$$

Cancelling 1 in the above and multiplying by $(t+u)Q_{ij}^{t}$ we arrive at

$$t(Q_u P_{t+u}^{-1})^{t+u} + (t+u) (Q_u P_{t+u}^{-1})^{t} - u > 0$$

which, in virtue of (1.2), implies that $Q_u P_{t+u}^{-1} > \alpha_u$.

REMARK 2. When t = u = 1 this lemma 4 of [1] and when t = 1 this yields a slight improvement of lemma 7 of [1].

LEMMA 3.4. For $n \in F_t$ we have $P_1(n) < t(Q_1(n))^{t+1}$.

PROOF. We write P for $P_1(n)$ and Q for $Q_1(n)$. Suppose $P \ge t Q^{t+\pm}$ choosing $m = n f(P,Q)P^{-1}$ we see that

$$1 < \frac{m}{n} \le 1 + \frac{Q}{P} \le 1 + \frac{1}{tQ^{t}}$$
 (3.6)

Arguing as in lemma 3.3, we have, since $P \ge Q^{t+1}$ by our assumption,

$$J_{t}(m)m^{-t} \leq (1-Q^{-t})(1-P^{-t})^{-1} J_{t}(n)n^{-t}$$
$$\leq (1-Q^{-t})(1-Q^{-t}(t+1))^{-1} J_{t}(n)n^{-t}$$
$$= (1+Q^{-t} + \dots + Q^{-t^{2}})^{-1} J_{t}(n)n^{-t}$$

so that by (3.6)

$$J_{t}(m)(J_{t}(n))^{-1} \leq (1+Q^{-t} + ... + Q^{-t^{2}})^{-1} (1+t^{-1}Q^{-t})^{t} \leq 1,$$

contrary to the hypothesis. This establishes the lemma.

LEMMA 3.5. For $n \in F_t$, $n_* < t(Q_1(n))^{t+1}$. PROOF. Writing $m = n f (n_*, Q) n_*^{-1}$, we note that

$$1 < \frac{m}{n} \le 1 + \frac{Q}{n_{\star}}$$

so that, since $n \in F_t$,

$$\exp(0) = 1 < J_{t}(m) (J_{t}(n))^{-1} \leq (1-Q^{-t}) (1+Qn_{*}^{-1})^{t}$$
$$< \exp(-Q^{-t}) \exp(tQn_{*}^{-1}).$$

The lemma follows on comparing the exponents.

LEMMA 3.6. Let $A \ge 0$, $M \ge 3$ and $\pi(A;M)$ be the number of primes p with $A (<math>\pi(A;M) = \pi(A+M) - \pi(A)$).

Then

$$\pi(A;M) \leq 2M(\log M)^{-1} \{1 + 0 \ (\log \log M \log^{-1}M)\}$$

and the 0-constant is independent of A.

This is Theorem 4.5, Chapter 19 of [2].

REMARK 3. Lemma 3.6 implies that $\pi(A;M) \leq 3M \log^{-1}M$ for all $A \geq 0$ and sufficiently large M.

4. PROOFS OF THEOREMS.

PROOF OF THEOREM 2.1. Let $n = d p_1 \dots p_{k-1} p_{k+l}$ where d,k,l satisfy (2.1) and (2.2). From (1.1) and (2.2) we have

$$J_{t}(n) \leq d^{t}(p_{1}^{t}-1) \dots (p_{k-1}^{t})(p_{k+}^{t}-1)$$

$$< (d+t)^{t}(p_{1}^{t}-1) \dots (p_{k-1}^{t}-1)(p_{k}^{t}-1) . \qquad (4.1)$$

Let m > n. There is a unique s such that $p_1 \dots p_s \leq m < p_1 \dots p_{s+1}$ and the last inequality implies that $\omega(m) \leq s$. Hence

$$J_{t}(m) \ge m^{t} (1-p_{1}^{-t}) \dots (1-p_{s}^{-t})$$
$$\ge (p_{1}^{t}-1) \dots (p_{s}^{t-1})$$
(4.2)

Case (1) $s \ge k+1$. We have, by (4.2),

$$J_{t}(m) \ge (p_{1}^{t}-1) \dots (p_{k}^{t}-1)(p_{k+1}^{t}-1)$$

> $(p_{1}^{t}-1) \dots (p_{k}^{t}-1)(d+1)^{t}$ by (2.1)
$$\ge J_{t}(n)$$
 by (4.1)

Case (2) s \leq k, $\omega(m) \leq$ k-1. In this case

$$J_t(m)m^{-t} \ge (1-p_1^{-t}) \dots (1-p_{k-1}^{-t})$$

where as

$$J_{t}(n)n^{-s} \leq (1-p_{1}^{-t}) \dots (1-p_{k-1}^{-t})(1-p_{k+1}^{-t})$$

$$\leq (1-p_{1}^{-t}) \dots (1-p_{k-1}^{-t})$$

so that $J_t(m) > J_t(n)$.

Case (3) $s \leq k = \omega(m)$ and $m_* \geq d+1$. In this case $s = k = \omega(m)$ and

$$J_{t}(\mathbf{m}) = \mathbf{m}_{\star}^{t} \prod_{p \mid \mathbf{m}}^{\pi} (p^{t}-1)$$

$$\geq \mathbf{m}_{\star}^{t} (p_{1}^{t}-1) \dots (p_{k}^{t}-1)$$

$$\geq (d+1)^{t} (p_{1}^{t}-1) \dots (p_{k}^{t}-1)$$

$$> J_{t}(\mathbf{n})$$

in virtue of (4.1).

Case (4) $s \le k = \omega(m)$ and $m_* \le d$. Let $m = m_* q_1 \dots q_k$, q_i 's being the distinct prime factors of m in ascending order. Then $q_i \ge p_i$ and since m > n we have

 $q_1 \dots q_{k-1} q_k > p_1 \dots p_{k-1} (d p_{k+\ell} m_*^{-1})$

Taking r = k-1, $y_i = q_i^t$, $y = q_k^t$, $x_i = p_i^t$ and $x = d^t p_{k+\ell}^t m_*^{-t}$ in lemma 3.1 we obtain

$$(q_1^{t}-1) \dots (q_{k-1}^{t})(q_k^{t}-1) > (p_1^{t}-1) \dots (p_{k-1}^{t}-1) (d^{t}p_{k+\ell}^{t} m_{\star}^{-t}-1)$$

so that

$$J_{t}(m) = m_{\star}^{t} (q_{1}^{t}-1) \dots (q_{k}^{t}-1) > (p_{1}^{t}-1) \dots (p_{k-1}^{t}-1) (d^{t}p_{k+\ell}^{t}-m_{\star}^{t})$$

> $d^{t} (p_{1}^{t}-1) \dots (p_{k-1}^{t}-1) (p_{k+\ell}^{t}-1)$
 $\geq J_{\star}(n)$

by (4.1). This completes the proof of Theorem 2.1.

PROOF OF COROLLARY 2.1. Let d be any positive integer. For each $k \ge 2$ such that (2.1) holds, we can take l = 0 so that (2.2) holds. Thus d $p_1 \dots p_k \in F_t$ for each $k \ge 2$ such that $p_{k+1} > d+1$.

As the proof of Corollary 2.2 is essentially the same as that of the Corollary given in section 3 of [1], we omit it.

PROOF OF THEOREM 2.2. Let p be a given prime. Choosing r such that $p_r > p \alpha_1^{-1}$, we see that $\omega(n) \ge r + t + 1$ for all n in F_t such that $n \ge p_1 \dots p_{r+3t}$ in virtue of lemma 2. For such n we have

$$P_{t+1} \ge p_r > p \alpha_1^{-1}$$

so that

$$Q_1 > \alpha_1 P_{t+1} > p$$

in virtue of lemma 3.3 (u = 1), yielding that p|n.

REMARK 1. Though this theorem follows immediately from Theorem 2.3 a direct proof seems desirable.

PROOF OF THEOREM 2.3. (a) For any n ε F, there is a unique integer k satisfying

$$\mathbf{p}_1 \cdots \mathbf{p}_k \leq \mathbf{n} < \mathbf{p}_1 \cdots \mathbf{p}_{k+1}$$
 (4.3)

By lemma 3.2, $\omega = \omega(n) \ge k - 2t + 1$ so that, for a fixed integer u, $P_u(n) \ge p_{\omega-u+1} \ge p_{k-2t-u+2} \sim \log n \text{ as } n \neq \infty \text{ in } F_t \text{ since, by the prime numbers theorem}$ $(\theta(x) \sim x),$

$$p_k \sim \log (p_1 \dots p_k) \sim \log n$$

and

$$p_{k-2t-u+2} \sim p_k$$
 as $k \neq \infty$ (hence as $n \neq \infty$ in F_t).

Thus $\lim_{n} \inf \frac{P_u(n)}{\log n} \ge 1$. On the other hand, considering members n of F_t of the form

 $p_1 \dots p_k$ (take d = 1, l = 0 in theorem 2.1), we have

$$P_u(n) \leq P_1(n) = P_k \sim \log n$$

as $n \rightarrow \infty$ through such members of F_+ . Hence

$$\liminf_{n} \frac{P_u(n)}{\log n} = 1$$

(b) For $k \ge 2$, $\ell \ge 0$ theorem 2.1 (with d = 1) says that

$$p_{k+\ell}^{t} < 2^{t} (p_{k}^{t}-1) + 1 \Rightarrow p_{1} \cdots p_{k-1} p_{k+\ell} \in F_{t}.$$

choosing & to be the largest subject to the above condition we have

$$p_{k++1}^{t} \ge 2^{t} (p_{k}^{t}-1) + 1 > p_{k+\ell}^{t}$$
 (4.4)

so that

$$p_{k+\ell+1} < 2(p_k^{-1}) \sim 2 \log n$$

where $n - p_1 \cdots p_{k-1} p_{k+\ell}$, since n satisfies (4.3) in virtue of (4.4). Now $P_1(n) = p_{k+\ell} \sim p_{k+\ell+1}$ and this yields

$$\limsup_{n} \frac{p_1(n)}{\log n} \ge 2$$

(c) Since, by lemma 3.3, $Q_u > \alpha_u P_{t+u}$, we have, from (a) lim inf $\frac{Q_u(n)}{2} \ge \alpha_u$.

On the other hand, choosing k as in (4.3) we see that $Q_1 \leq p_{k+1}$ and hence $Q_u \leq p_{k+u}$ for all n in F_t , where as, for members of F_t of the form $p_1 \cdots p_k$ we have $Q_u = p_{k+u}$. Since $p_{k+u} \sim p_k \sim \log n$ we have

$$\limsup_{n} \frac{Q_{u}(n)}{\log n} = 1.$$

(d) and (e) now follow by applying lemmas 3 and 4 respectively.

PROOF. OF THEOREM 2.4. We write $G(x) = F_t(x) - F_t(\frac{x}{2}) = number of members n of$ $<math>F_t$ satisfying $\frac{x}{2} < n \le x$ and show that $\log G(x) \ll \log^2 x$ from which the theorem follows easily. Throughout the proof we assume that x is a sufficiently large positive real number. We write

$$u = [\log^{\frac{1}{2}} x (\log \log x)^{-1}] - t$$
 (4.5)

and note that $t+u \ge 2^t + 2t$. For $n \in F_t$, $n > \frac{x}{2}$ we have $Q_1(n) \ge \frac{4}{5} \alpha_1 \log n$ by (2.3) Putting $Q_1 = P_{\ell+1}$ and noting that $\ell + 1 \ge \frac{3}{4} = \frac{Q_1(n)}{\log Q_1(n)}$ by the prime number theorem we conclude that

$$\omega(n) \geq \ell \geq \frac{\alpha_1 \log n}{2 \log \log n} \geq \frac{\log^2 x}{\log \log x} \geq t + u \quad 2^t + 2t.$$

Each n is specified uniquely when n_{\star} and the prime factors of n are given. We estimate an upperbound for G(x) by estimating upper bounds for the number of choices, consistent with n ε F_t $(\frac{x}{2}, x]$, for each of (a) n_{\star} (b) the largest t+u prime factors of n, namely P₁,...,P_{t+u} (c) the prime factors of n that are less that α_u P_{t+u} and (d) the prime factors of n that lie in $[\alpha_u$ P_{t+u}, P_{t+u}).

(a) By lemma 3.5 and (2.3) the number of choices for n_{\star} does not exceed t (2 log x)^{t+1} and hence does not exceed (2 t log x)^{t+1}.

(b) $P_1 \leq P_1 \leq 2t (\log x)^{t+1}$ for $1 \leq i \leq t+u$ in virtue of (1.8) so that the number of choices for P_1, \ldots, P_{t+u} does not exceed (2t log x)^{(t+1)(t+u)}.

(c) Each choice of Q_1, \ldots, Q_u gives rise to exactly one choice of the prime factors of n that are ${}^{<\alpha} u P_{t+u}$ and each choice of these prime factors gives rise to at least one choice for Q_1, \ldots, Q_u since ${}^{\alpha} u P_{t+u} < Q_u$ and all primes in $(1, {}^{\alpha} u P_{t+u}) \{Q_1, \ldots, Q_u\}$ divide n. If $P_1 = P_r$ then $r < P_r = P_1 \leq 2t \log^{t+1}x$, $Q_1 \leq P_{r+1}, \ldots$ and $Q_u \leq P_{r+u}$. Hence $Q_1 \leq P_{r+u} < (r+u)^2$ (3t $\log^{t+1}x)^2$ so that the number of choices for Q_1, \ldots, Q_u and hence for the prime factors of n in $(1, {}^{\alpha} u P_{t+u})$ does not exceed (3t $\log^{t+1}x)^{2u}$.

(d) Let $M = P_{t+1} - \alpha_{11} P_{t+11}$ and note that

$$M = (1 - \alpha_{u}) P_{t+u} \leq 2t(t+u)^{-1} P_{t+u}$$
$$\leq 3t(t+u)^{-1} \alpha_{u}^{-1} \log x$$
$$< 4t \alpha_{u}^{-1} \log^{\frac{1}{2}} x \log \log x$$

in virtue of (1.3), (2.4) and (4.5) respectively. Hence, by remark 3 following lemma 3.6, the number of primes in $[\alpha_u P_{t+u}, P_{t+u}]$ does not exceed 24t $\alpha_u^{-1} \log^{\frac{1}{2}}x$ and consequently the number of choices for the prime factors of n that lie in this interval does not exceed 2

Combining the estimates (a) through (d) we obtain $G(x) \leq (3t \log x)^{3(t+u)(t+1)} \exp (24 t \alpha_u^{-1} \log^{\frac{1}{2}} x \log 2)$ from which the desired order estimate follows in virtue of (4.5).

It would be interesting to investigate whether results of this nature are available for more general totients; e.g. totients with respect to a polynomial [3] and with respect to a set of polynomials [4], introduced by the first author.

REFERENCES

- MASSER, D.W. and SHIU, P. On sparsely totient numbers, <u>Pacific J. of Math.</u> <u>121</u> (1986), 407-426.
- HUA, L.K. <u>Introduction to Number Theory</u>, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
- 3. CHIDAMBARASAMY, J. Totients with respect to a polynomial, <u>Indian J. of Pure &</u> <u>Applied Math. 5</u> (1974), 601-608.
- Totients and unitary totients with respect to a set of polynomials, Ibid, <u>10</u> (1979), 287-302.