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ABSTRACT. Let Ft be the set of all positive integers n such that Jt(n) < Jt(m) for
allm > n, Jt(n) being the Jordan totient function of order t. In this paper, it

has been proved that (1) every postive integer d divides infinitely many members of
Ft (2) if n and n' are consecutive members of Ft’ 21 +1asn > in Ft (3) every
prime p divides n for all sufficiently large n ¢ Ft and (4) Log Ft(x) < logéx where

Ft(x) is the number of n € Ft that n = x.
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1. INTRODUCTION.
In [1] Masser and Shiu consider the set F of positive integers n such that

¢(n) < ¢(m) for all m > n, (n) being the Euler totient function. Calling members

of F sparsely totient numbers, they prove, among other results, that (1) every

integer divides some member of F (2) every prime divides all sufficiently large

members of F (3) the ratio of consecutive members of F approaches 1 and

(4) log F(x) « 1ogi

members of F which do not exceed x.

x where F(x) is the counting function of F; that is, the number of

In this paper, using similar methods, we extend the above results to the set Ft
of all positive integers n such that Jt(n) < Jt(m) for all m > n, Jt(n) being the
well known Jordan totient function of order t [4]. We recall that Jt(n) is defined

as the number of incongruent t-vectors (al,...,at) mod n such that ((al,....at)n) =1,

it being understood that t-vectors (al,...,at) and (bl""’bt) are congruent mod n
if a; = bi(mod n) for 1 £ i £ t and that Jt(n) is given by the formula
Jm=n" o a-pH (1.1)

Pin

Moreover this function Jt(n) coincides with Cohen's [3] generalization ¢t(n) of the

Euler totient function, defines as the number of positive integers a* n® such that
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(a,nt)t = 1 where (x,y)t denotes the largest t th power common divisor of x and y.
Clearly Jl(n) (and hence ¢l(n)) is the same as ¢(n).

Denoting by w(n) the number of distinct prime factors of n, we order these prime
factors as P1 > P2 > ... > P (n); thus Pr = Pr(n) is the r th largest prime factor of
n. Likewise we order the primes not dividing n as Q1 < Q2 < «.. o Further we write
P, for the r th prime in the ascending sequence of all primes. For positive integral
n, we write n, to denote the quotient of n by its largest square free divisor. For a

positive integer u, we write o for the unique positive root of the equation
t xt+u + (t+u) xt -u=0. (1.2)
It may be directly verified that

1--28_ <4 <1 (1.3)

Finally we write Ft(x) for the number of members of Ft that do not exceed x.
2. MAIN RESULTS.

We prove the following results:

THEOREM 2.1. Let k22, d 21, £ 2 0 be integers such that

d < P41 = 1 (2.1)
and

a“(pp,, - D < @D (p, - D). (2.2)

Then d Pyees Pp_qPrs is .2 member of Ft'
COROLLARY 2.1. Every positive integer d divides infinitely many members of Ft'
COROLLARY 2.2. If n and n' are consecutive members of Ft’ then n-ln' + 1 as
n *> * in Ft'
THEOREM 2.2. Every prime p divides n for all sufficiently large n € Ft'
THEOREM 2.3. Let u be a fixed positive integer. As n + « in Ft we have
(a) lim inf Pu(n) log-ln = ]
n
(b) 1im sup Pl(n) log-ln 22
n

(c) e, S 1lim inf Qu(n) log-ln S 1lim sup Qu(n) log-ln =1 (2.3)
n n
-1 -1
(d) limnsup Pt+u(n) log 'n s au (2.4)
and
(e) lim sup Pl(n) 1og-t-1n St (2.5)
n
)

THEOREM 2.4. log Ft(x) <« log*x.
3. FOR THE PROOFS OF THE THEOREMS WE NEED THE FOLLOWING LEMMAS.

LEMMA 3.1. Let r be a positive integer and XiseeesX s Yyseees¥ s X and y be real

r

numbers satisfying (i) 1 = X, < vy and y 2 Xy for i = 1,...,r and

(ii) XjeooX X < YyeeYp V- Then (xl-l) ceees (xr-l)(x—l) < (yl—l)...(yr—l)(y-l).
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This is lemma 3.1 of [6].
For positive integers a and b we write f(a,b) to denote the smallest multiple of b

that exceeds a. Clearly

a < f(a,b) £ a + b. (3.1)
LEMMA 3.2. If n € Ft and

Py -es Py S n < P; +++ Py Py (3.2)

then k-2t < w(n) = k.
PROOF. The second inequality in (3.2) implies that w(n) = k. Suppose if

possible, that 0 < w(n) £ k - 2t. It follows from (l.1) that
t t

S0 - (3.3)

Jt(n)m_t 2 (1 - pl— ) .o (1 - p;

Choosing m = f(n, Py --- Pk—t)’ we have, by (3.1) and (3.2),

PqeeeDy_
s1e Lkt o1 o L (3.4)

n Pr—e+1°°*Px Pr-t

1 <

sig

On the other hand, since PyseesPpr divide m, we have, in virtue of (3.3),

Jt(m)m-t s (19,79 ... (1-p;ft)

A

-t -t -t
Je@n = (= pepy) oe (AP )

t

A

-t -t
J (n = (1-p )
so that, (3.4) now yields

J_(m) t
t -t -t
3:?;7 < (1 + pk—t) (1 - pk-t) <1

contrary to the hypothesis that n € Ft' Hence the lemma follows.
REMARK 1. Since for each n there is a unique k such that (3.2) holds, lemma 3.2
implies that w(n) + ® as n * « in Ft'
LEMMA 3.3. If u is a positive integer, n € Ft and w(n) 2 §1+ u then a, Pt+u< Qu.
PROOF. We write a = Pl cee Pt+u’ b= Ql e Qu and m = na f(a,b) so that

b

1 o1+ “t-u
n a

u
L4HQ Py

. (3.5)

Since Ql""’Qu are prime factors of m but not of n where as the prime factors

Pl""’Pt+u of n may or may not divide m, we have

- - - e -1 -l -
3, (m)m 1 =% ... a-CHa-e[H T L ur iy 5

so that (3.5) and the hypothesis that n Ft together imply

-1 u_-t-u, ° -t ttu -t, "L
s an™ < grlth s oa-gh x o ash
S RTOTS s RS N s R N i R

u’ t+u u t+u
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Taking (t + u) th roots and employing the well known inequality xF 51+ r(x-1)

for x >0, 0 <r <1, we obtain

u/t+u pot-u t/t+u

1P, < (-q.5) Py

< {1-uQ (t+u) 1} {1+tQ pt Y (t4u)” }
< l-uQ;t(t+u)- +tQ¥ P U ()

Cancelling 1 in the above and multiplying by (t+u)Q§ we arrive at

-1 ttu -1 .t
t(Q Pry) F(th) (Q P ) -u>0

-1
which, in virtue of (1.2), implies that Q Pt+u o,

REMARK 2. When t = u = 1 this lemma 4 of [1] and when t = 1 this yields a
slight improvement of lemma 7 of [1].

LEMMA 3.4, For n € F we have P (n) < t(Ql(n))t+l
PROOF. We write P for P (n) and Q for Ql(n) Suppose P 2 t Q + choosing
m=n £(P, Q)P we see that
m Q. 1
1< a S1+ P = 1+ s (3.6)

tQ
Arguing as in lemma 3.3, we have, since P 2 Qt+1 by our assumption,

- - e -1 -
I, (@m t s a-"Ha-eh 3 (@) t

IA

- - -1 -
a-¢H - T 5 @a

a+Qt + ... + Q%) Jt(n)n-t

so that by (3.6)
- - 2 -1 -1 -
J (@, () Lo et + .o + Q787 (el HE s 1,

contrary to the hypothesis. This establishes the lemma.
LEMMA 3.5. For m € F,, n, < :(Ql(n))t+l
PROOF. Writing m = n f (n*,Q)n* , we note that

1<B<14+2
Ny

a8

so that, since n ¢ Ft’

-1 -t -1, t
exp(0) = 1 < J (m (3, )7 5 (1-07%) (14am,™H)
< exp (-Q"%)exp(tqn, ™).

The lemma follows on comparing the exponents.
LEMMA 3.6. Let A 2 0, M 2 3 and n(A;M) be the number of primes p with
A < p s AtM (m(A3M) = T(A+M) ~ w(A)).
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Then

T(A;M) S 2M(log M)~! {1 + 0 (log log M log M)}

and the O-constant is independent of A.

This is Theorem 4.5, Chapter 19 of [2].

REMARK 3. Lemma 3.6 implies that w(A;M) < 3M log ‘M for all A 2 0 and
sufficiently large M.
4. PROOFS OF THEOREMS.

PROOF OF THEOREM 2.1. Let n =d p1
(2.2). From (1.1) and (2.2) we have

ceoPr1 Prag where d,k,% satisfy (2.1) and

J (n) s at (p1t~l) .o (p;_l)(p;+ -1)
< (d+c)t(p1t—1) ces (p;_l-l)(Pkt‘l) . (4.1)

Let m > n. There is a unique s such that Py --¢ Pg Sm< Pp «er Poyy and the last
inequality implies that w(m) £ s. Hence

t -t -t
Jt(m) 2 m (l-p1 ) e (l-ps )
2 (p,5-1) ... (ps“l) (4.2)
Case (1) s 2 k+l. We have, by (4.2),
J@ 2 (@D .. D GE D
> (D) ... (pp-1) (a+1)® by (2.1)
23, (m by (4.1)
Case (2) s s k, w(m) s k-1. In this case
T mu " 2 (1-p,7H) L. (- pt))

where as

J mn™ s (1-p1%) .en (-p S DAY )
< (-p1) eens (-ppt)

so that Jt(m) > Jt(n).

Case (3) s £ k = w(m) and m, 2 d+l. In this case s = k = w(m) and

J @ =my 1 %D
p|m

[\

t
my (B1-1) +eeen (PE-D)

[\

(a+1)*t (p'{-l) (p;—l)

> Jt(n)



128 J. CHIDAMBARASWAMY AND P.V. KRISHNAIAH

in virtue of (4.1).
Case (4) s Sk = w(m) and m, £ d. Let m = m, qp 00 Qs qi's being the

distinct prime factors of m in ascending order. Then 9 2 Py and since m > n we have

-1
Ay ver ey G TPy oceees Py (P My )

Taking r = k-1, y; = q;, y = q;, X, = p; and x = dtp;+£m;t in lemma 3.1 we obtain
t t t t t t t -t
(q-1) ... (q_;)(q=1) > (py=1) «.e. (py_;=1) (d7pp,, m, =1)

so that
t  t t t t t t t
Jo@ = my (q-1) ... (q=) > (=D eeel (pyp_ =D (d P, om, )
A I DI AR TS
2 Jt(n)

by (4.1). This completes the proof of Theorem 2.1.

PROOF OF COROLLARY 2.1. Let d be any positive integer. For each k 2 2 such
that (2.1) holds, we can take £ = 0 so that (2.2) holds. Thus d P »+er P € Ft for
each k 2 2 such that Pril > d+l.

As the proof of Corollary 2.2 is essentially the same as that of the Corollary
given in section 3 of [1], we omit it.

PROOF OF THEOREM 2.2. Let p be a given prime. Choosing r such that

P, >p al , we see that w(n) 2 r + t + 1 for all n in Ft such that n 2 Py cece Pryge

in virtue of lemma 2. For such n we have

-1
Pt+1 z Pr 7P

so that
Q> Py > P

in virtue of lemma 3.3 (u = 1), yielding that pIn.

REMARK 1. Though this theorem follows immediately from Theorem 2.3 a direct
proof seems desirable.

PROOF OF THEOREM 2.3. (a) For any n € Ft’ there is a unique integer k satisfying

Py +eee P Sn< PyeeeePry) (4.3)

By lemma 3.2, w = w(n) 2 k - 2t + 1 so that, for a fixed integer u,

> > -~
Pu(n) 2 Pyoutl 2 Proot-ut2 log n as n > ® in Ft since, by the prime numbers theorem
0(x) ~ x),
P, ~ log (py --- p) ~ logn
and

Py _op_u+2 ~ Py 28 k * © (hence as n * » in Ft)'



ON INTEGERS n WITH J,(n) < J (m) FOR m > n 129

P (n)
Thus lim inf
n log n

2 1. On the other hand, considering members n of Ft of the form
Py -es Py (take d = 1, £ = 0 in theorem 2.1), we have
< = -~
Pu(n) 4 Pl(n) Py log n

as n * @ through such members of Ft' Hence
P (n)
log n

lim inf
n

(b) For k 2 2, £ 2 0 theorem 2.1 (with d = 1) says that
t t t
Prpg <2 (D) + 1 =2 pp eon Py Pryy € Fye

choosing £ to be the largest subject to the above condition we have

t t o, t_ t 4k
Py 41 2 2 (D) + 1> Py (4.4)
so that
Prsssl < 2(pk-1) ~21logn

where n - Py **c ProiPies ° since n satisfies (4.3) 1in virtue of (4.4).

Now Pl(n) = Pran ” Pragsl and this yields
p,(n)
1lim sup .
a log n

(c) Since, by lemma 3.3, Qu > @, Pt , we have, from (a)

(n)
1lim inf Qu

n log n

+u

2 a..
u

On the other hand, choosing k as in (4.3) we see that Q1 = Prt1 and hence Qu = Pty
for all n in Ft’ where as, for members of Ft of the form Py -c Py We have Qu = Prtu®
Since Pty = P " log n we have

Q,(m)
log n

1lim sup = 1,
n

(d) and (e) now follow by applying lemmas 3 and 4 respectively.

PRQOF. OF THEOREM 2.4. We write G(x) = Ft(x) - Ft(§) = number of members n of
Ft satisfying % < n S x and show that log G(x) ¥ log“x from which the theorem follows
easily. Throughout the proof we assume that x is a sufficiently large positive real

number. We write

u= [ log!x (log log x)_I] -t (4.5)

and note that t+u 2 2% + 2t. Forn e Ft’ n > % we have Ql(n) 2 % o log n by (2.3)
. . 3 W

Putting Q1 = Pyl and noting that £ + 1 2 4 Tog Q1(n) by the prime number theorem

we conclude that
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log}x

2 log log n log log x

a.log n
L 2e+u 2%+ 2t

w(n) 2 2 2

Each n is specified uniquely when n, and the prime factors of n are given. We
estimate an upperbound for G(x) by estimating upper bounds for the number of choices,
consistent with n € F (%, x], for each of (a) n, (b) the largest t+u prime factors
of n, namely Pl,...,Pt+u (c) the prime factors of n that are less that a, Pt+u and
(d) the prime factors of n that lie in [au Pt+u’ Pt+u)'

(a) By lemma 3.5 and (2.3) the number of choices for n, does not exceed
t (2 log x)t:+ and hence does not exceed (2 t log x)t+1

(b) P, = P, S 2t (log x) for 1 £ 1 £ t+u in virtue of (1.8) so that the

11 (t+1) (t+u)
number of choices for Pl""’Pt+u does not exceed (2t log x) .
(c) Each choice of Ql""’Qu gives rise to exactly one choice of the prime

factors of n that are < L P and each choice of these prime factors gives rise

t+u
to at least one choice for Ql""’Qu since o P

(1, o, P

t+u < Q and all primes in
+1
t+u) {Ql""’Q } divide n. 1If P, =P, then r < P, = Pl < 2t log X,
Q1 s Ppyps--- and Q Prgyt s Pryy < (r+u)? (3t log x)2 so that the

number of choices for Ql""’Qu and hence for the prime factors of n in (l,a“P )

Hence Qi

t+u
does not exceed (3t logt+1x)

(d) Let M = Pt+u - au Pt+u and note that

-1
M= (1- au) Pt+u S 2t(t+u) Pt+u

= 3(:((:+11)-1 cu—l log x

3

< 4t au-l log“x log log x

in virtue of (1.3), (2.4) and (4.5) respectively. Hence, by remark 3 following

1

lemma 3.6, the number of primes in [a P ) does not exceed 24t au- log!x and

t+u’ t+u
consequently the number of choices for the prime factors of n that lie in this

24tay-170g2
interval does not exceed 2 %u~llog x,

Combining the estimates (a) through (d) we obtain G(x) S (3t log x)
exp (24 t uu-l log’x log 2) from which the desired order estimate follows in virtue
of (4.5).

It would be interesting to investigate whether results of this nature are

3(t+u) (t+1)

available for more general totients; e.g. totients with respect to a polynomial [3]
and with respect to a set of polynomials [4], introduced by the first author.
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