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ABSTRACT: The decomposition method is applied to examples of hyperbolic, parabolic,

and elliptic partlal differential equations without use of linearlzatlon techniques.

We consider first a nonlinear dissipative wave equation; second, a nonllnear equation

modeling convectlon-diffusion processes; and flnally, an elliptic partial differential

equation.

KEY WORDS AND PHRASES. Decomposition method, linear and nonlinear partlal

differential equations, parabolic equations, elliptic equations, hyperbollc equations.

1980 AMS SUBJECT CLASSIFICATION CODES. 35L35, 35L70.

I. INTRODUCTION:

The decomposition method [I] has developed rapldly and is now providing solutions

in the form of converging analytlc series for broad categories of ordinary or partlal

differential equations or systems of equations with given inltlal/boundary

conditions. An important advantage is that llnearlzation is not required. The rather

global character is shown by application to some typical examples a dissipative wave

equation, and equation modeling convection-dlffusion processes, and an elliptic

equation Without the use of llnearlzation techniques.

2. HYPERBOLIC CASE

Consider the dissipative wave equation utt Uxx + (/@t)f(u) 0 with

f(u(x,t)) a continuous bounded function and (t,x) [O,T] R. Let L -2/t2
t

and L 32/x2 and vrite

L u- L u (8/3t)f(u(x,t)) (2.1)
t x
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Using the decomposition method [I] we solve for each linear term thus

L u L u- (/t)f(u) (2.2)
t x

L u L u + (81t)f(u)
x t

Operating with the inverses, we have LtlLt u u t and Lx ILxu u x’ where

the homogeneous solutions are evaluated from the given Initial/boundary conditions.

Thus (2.2) becomes

u t + LILxu Ll(/3t)f(u)

u @x + LILtu + Ll(lt)f(u)

Adding and dividing by two

+ x + (1/2)(LlL + L-1L )uu- (1/2)(
t x x t

I/2)(L Ll)(:/t)f(u)
or if

K (I/2)(LILX + L-ILx t
C (1/2)(L-1 L1)

t
(2.3)

u
0

(I/2)(
t
+ x

we have

u u
0
+ Ku + G(lt)f(u) (2.4)

a result also obtained by operating on (2.1) with (L-I L-l).
t x

Let u u with u0 as defined and let f(u) . An, where the An are
nffi0

n n-O

generated for the specific function f(u) as discussed in Ill. Now

u u
0

+ K u + oCelOt) . A
nffi0

n n=0
n

(2.5)

We define

u Ku + G(/Bt)A
n+l n n

(2.6)
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n-!
for n 0 to complete the solution. An n-term approximation n- ui suffices

i-O
as discussed in [1,2].

3. PARABOLIC CASE:

Consider a nonlinear parabolic partial differential equation modeling convection-

diffusion processes given in the form

u au + f(u,t,x)u 0 (3.1)
t xx x

on a defined finite region on R with t O. Assume a is a constant, f is a smooth

function of t,x,u, and the Inltlal/boundary conditions are given. Of course, to

obtain a quantitative solution, the specific form of f is required. When it is, any

separable terms in x and t will be designated by -g(x,t) and any remaining term

dependent on u, and multiplying ux can be written N(U,Ux). Let L /t and
t

L }2/}x2 and write (2.1) as
x

Ltu- aLxU g- N(u,ux) (3.2)

The decomposition method solves for each linear operator term in turn; thus

Ltu g + aLxU- S(U,Ux

LxU -a-lg + a-ILtu + a-IN(u,ux)

L-1Ltu-c u A u u(x,O) and --LIL u u- B Cx, we obtainSince
x x

u.A+L-I
g /

u B / Cx a-lL-1 a-1 -1 a-lL-1
x

g + L Ltu + N(u uX)x x

A is the initial condition, B and C are evaluated from the remaining two conditions.

Ne add the two equations for u and divide by two, obtaining a single equation for

u. If we define

u
0 (I/2){u(x,O) + B + Cx + LIg a-IL:Ig}

K -(1/2){aL:1Lx + a-lL-1Lt}x (3.3)

G -(I/2){L a-lL-l}x
we have

u u
0

+ Ku + G N(u,u
x
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The solution by decomposition is u .
components given by

n-O
u with the given u0 and the remaining

u Ku + GA (3.4)
n+l n n

for n ) 0, where the An are defined [I] for N(u,ux) with N(u ux) . A Thus
n-0. Knu0 + G Nu (3.5)U

nffi0

is the complete solution since the An are easily evaluated for any specific function

n-I
f. A practical solution is given by n )" ui since the solution converges

iffiO
generally quite rapidly.

The solution can also be made by operating on (2.2) with (L-l- -IL-I
t x

de.slgnate the solution of L u 0 by t and of L u 0 by x i.e.

LtlLt u u t and L_IL t x
u u- x" We obtain

x X

). Let us

-I
L

-I
Lu -IL u + u #xu #t -eLt x x t

(L1- c*-lL-1)(g N(u ux))X

u (1/2)(#
t
+ #x) + (l/2)(L-lt a-lLx-1)g

(I/2)(L1Lx + a-IL-1Lxt)u
--(1/2)(L a-lL-1)N(Ux ’Ux)

or

u u
0
+ Ku + G N(U,Ux (3.6)

Though the result is the same and t’ Cx are evaluated from the given conditions,

writing u0 as

Uo (1/2)(#t + x + (1/2)(L-It -a-lL-1)gx (3.7)

means the result is not limited to the given parabolic equation the derivatives can

be of any order. The nonlinear term N(U,Ux) can also be more general. The An can be

generated for composite nonlinear functions [I].
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4. ELLIPTIC CASE:

The elliptic equation V2u + k(x,y,z)u f(x,y,z)

physics and engineering. Let’s consider the case:

arises in some problems of

u + u + k(x,y)u 0
xx yy

k(x,y) x2 +

Define L 821ax2, L 82/a and write
x y

[Lx + Ly]U + ku- 0

Solve for each linear operator term in turn. Then

LxU ku LyU

LyU ku LxU
-I -I

Apply the inverses L to the first, L
x y

L-ILxxU u- @x’ L-ILyYU u- @y, where @x

(4.2)

to the second. Then since

@y are defined by the inltlal/boundary

conditions, we have

u @x L [x2 + y2]u (4.3a)

u @y Ll[x2 + y2]u (4.3b)

Choosing convenient conditions u 0 at x 0 or y 0 and u sin y at x and

sin x at y 1, we have

A+ Bx x sln y
x

@y C + Dy y sin x

Let @x and @y represent the u0 term of the decomposition u

equations for u in (4.3a,b). Thus, considering both in parallel

in the two

u
0

x sin y

u
0

y sin x

(4.4a)

(4.4b)
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so that

u-- o Lx(X + y) u.
n=O

u u0- Ly (x2 + y2) u
n=O n

’us

Un+l _Ll(x2 + yZ)un (4.5a)

_L-l(x2 + y2)u (4.5b)Un+l y n

for n 0 where u for (4.5a) uses (4.4a), etc. For example,

Ul L-Ix (xz + yZ)u
0

(4.6a)

ul _Ll(xz + yZ)u
0

(4.6b)

The one-term approximation to u is given by I (x sin y + y sin x)/2. We see

using the first terms of the trigonometric series that I xy. We observe from the

u term and the second term of the expansion for sin y, we get -x3y3/3!.

From the u2 term -L-IL [x3/3!)sin y] and the third term of sin y, we get
x y

xSyS/5!, etc. The n-term approximant is given by the n-term series for sin xy
n

plus noise terms. To save computation, we can substitute u sin xy and verify it is

indeed the correct solution. If we calculate several terms, it is easy to see

cancellation of terms other than the series for sin xy. Or, if analytic

nonlinearities f(u) are involved, the appropriate An polynomials are generated and we

let f(u) A
n-0

To make some checks of accuracy of the methodology, we consider the one-

dimensional case dZu/dx2 -40xu 2 with u(-l) u(1) 0. Here L d2/dx2 and we

have Lx 2 + 40xu. This is a relatively stiff case because of the large coefficient

of u, and the nonzero forcing function yields an additional Airy-like function.

Operating with L
-I

yields u A + Bx + L-I(2) + L-l(40xu). Let u0 A + Bx +

L-I(2) A + Bx + x2 and let u

that
nffiO

u with the components to be determined so
n

the sn is u. We identify Un+
-I
L (40xu). Then all components can be
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determined, e.g., u (20/3)Ax + (10/3)Bx4 + 2x5 and u2 (80/9)Ax6 + (200/63)Bx7

n-1
+ (10/7)x8, etc. An n-term approxlmant n u

i
with n- 12 for x-- 0.2 is

given by -0.135649, for x 0.4 is given by -0.113969, for x 0.6 is given by

-0.083321, for x 0.8 is given by -0.050944, and for x 1.0 is, of course, zero.

These easily-obtalned results are correct to seven digits. We see that a better

solution is obtained and much more easily than by variational methods. The solution

is found just as easily for nonlinear versions without llnearlzatlon.
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