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ABSTRACT. In this paper we establish the existence and uniqueness of global classical

solutions for the equation which arises in the study of the extensional vibrations of

thin rod, or torsional vibrations of thin rod.

I. INTRODUCTION.

In this paper we study the existence and uniqueness of global classical solutions

of the first inltlal-boundary value problem for the equation:

Au M( R IVuJ2dx)Autt f (I I)Utt

in Q & x]0,T[, where R(8: the boundary) is a smooth bounded domain in Rn, T is a

positive number, Vu is the gradient of u, A is the Laplace operator and M(I), O,

is a real valued function with M(I) p > 0, 0, for some p > O. We have

mathematical interest in solving the equation (I.I) by the following reasons.

First, the equation (I.I) with M(A) aflses in the study of the extensional

vibrations of thin rods, see Love [I], and it was studied by one of the authors in [2]

and [3]. Second, the equation (I) with M(I) o I #2do’ x, where is the

torslon-functlon arises in the study of the torsional vibrations of thin rods, see

Love [I]. Third, the function M(1) in (1.1) has its motivation in the mathematical

description of the vibrations of an elastic stretched string, that is, the equation:

utt- M IVul2dx) Au 0 (1.2)
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what for M(A) 0 > 0 was studied by Pohozaev [4], Nishihara [5] and Lions [6].

When M(A) 0 was treated by Arosio-Spagnolo [7], Ebihara-Medeiros-Milla Miranda [8]

and Yamada [9].

In this paper, we establish the existence and uniqueness of global classical

solutions for the equation (1.1). For that we use the Faedo-Galerktn method and

compactness argument with some technical idea.

2. NOTATIONS, ASSUMPTIONS AND MAIN RESULT.

Let (wj) JN

H
2

(l)on O1) n H
0

be a system of eigen functions of -A which is defined

We denote by V V(R) the set of all finite linear combinations

of (wj) JN Putting (f,g) f f(x)g(x)dx, we set (’"’)m ((-A)m’"’)’ m-l,2,...,

then (.,..)m define an inner product on V. We put V V () as the closure of V bym m

2 (" ")m" Then we see thatthe topology of norm

c H-(), m 1,2 .... and the norm . is equivalent in V to the standard normm m m

of Hm(). We see that all the above injections "-" are compact.

Let T be a positive number and B a Banach space with a norm If’lIB" We shall

represent by LP(0,T;B), p < ", the Banach space of vector-valued functions

T

LP(0,T;B) 0

and by L (0,T;B)the Banach space of vector-valued functions u:]0,T[ B which are

L (0,T;B)

We denote by C(O,T;B) the space of all vector-valued functions u:[O,T] / B,
which are J-tlmes dlfferentlable in the sense of B.

Let M(A), 0 be a real valued function such that:

M() CI[o,(R)) and there exist constants a > 0 and p > 0 that

verify M(1) a)I/2 + p, / [0,(R)),



SOLUTION OF A QUASILINEAR HYPERBOLIC EQUATION 31

(A.2) tM’()I 1/2 (A)M(k) where () cO[o,-), () 0, k 0, then

we have the following result:

THEOREM 2.1. Suppose that

Uo,Ul Vm’ (m

f,f’ e C(0,T;Vm_I).

Then there exists a unique function u: [0,T] L2(R) in the class:

that verifies

u e (0,T;Vm)
u" Au M(IUI2)Au’’’ f in Q

u(O) uo

u’ (0) u

3. PROOF OF THEOREM I.

We divide the proof in four parts:

a) Approximated solutlons

b) A priori estimates

c) Passage to the llmlt

d) Uniqueness

(2.1)

(2.2)

(2.3)

(2.4)

(2.6)

(2.7)

a) APPROXIMATED SOLUTIONS.

Let [Wl,...,wk] be the subspace of V, generated by the first k eigenvectors

of

Let
k

u
k

(t) . gjk(t)wj [Wl,...,Wkl
J=1

be a solution of the system:

(Uk" Au
k M(lUk 12 AU ,w) (f,w) for all w-[wl,...,wk] (3.1)

u
0 strongly in V as k /u

k
(O) uOk m

(3.2)

k
where U0k

jffil

u(O) Ulk Ul strongly in Vm as k =,

k

-j= (u(u0’ wj)wj’ Ulk l’Wj)Wj

(3.3)
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Then we see that the solution Uk(t) exists on an interval [0,Tk)
priori estimates will permit us to extend Uk(t) to all interval [0,T].

0 TkT.

b) A PRIORI ESTIMATES

we have

I) Putting w (t) in (3.1),

2 2 2Uk"10 + (Uk’Uk) + M(lUktl)lUll (f’uk)"

Thus by (A.I),

lUkl0,,2 2 6
JUklllUll +

Ifl01u]0

where C is a positive constant such that Then from this and (2.2),

C2 2

lull 2 2 Ill0) < C(’-" +
2

t p

where C > 0 is a constant independent of t and k.

Thus

() is bounded in L (0,Tk;Vl)" (3.4)

By Fundamental Theorem of Calculus, we have

and
(u) is bounded in L (O,Tk;V I)

(uk) is bounded in L (0,Tk;V1)"

The above estimates permit us to extend Uk(t) to all interval [0,T].

II) Making w (-A)m- u, in (3.1)

we have:

d 2 2 2 2
d [luIm-1 + lUkIm+ M(lUkll)lulm]

l)(Uk’%)lluIm / (f,t)m_1.

By (A.2) and (3.6), we have
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C2 2 2

Then integrating from 0 to t and using (2.1) and (2.2) we obtain:

u.2 2 2 2+ lull +"lul)luklkl

t, c
3
+ c [lul + "lullul.]ds

where C
3 C3(Uo,UI,T) and C

4 max{l,C2}.

Thus, by Cronwall inequality and (A. 1), we have:

lul + I.I 2 , c
m-1

+ lUklm m 5

where C
5 > 0 is a constant independent of t and k.

nence

(uk) is bounded in L (0,T;Vm)’

(u) is bounded in L (0,T;Vm).

(Ill) Taking the derivative of (3.1) Ith respective to t, we obtain:

2 ,A2’(lUkl)(.%) ..) ( ,,,) o . ,, [,,, .... ,,kI.

Putting in (3.9) w (-A)m-I we have

2 2]d [[ .12 2 +.(luix)l.l2 dt Uk - + lUlm
+ ,(i.kl 2 2.

Thus by (3.2) and (3.6),

Integrating from 0 to t, we have:

(3.7)

(3.8)

(3.9)
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m.-i
Putting w (-A) u"(0) in (3.1) and tending t 0, we obtain:

k

lu"<o>l +
+ <.,+<o> <o>> +.<luol++>l "o>I 2

m--1 m Uk m

(f(0), (0))m_l

Thus,

I<>I + + "<:l 12 2, 2 + +l.co>l +
+-t Uok ,> I-’CO>I., +l"okl.,

2 2+ Ifc>l + +I,,o>Im-I m-

for T > 0.

(3.1o)

Then, by (A.1), (2.2) and (3.2), we have

luco>l 2
m-I

-I- 2(p- ’,>luco>l "::6

where C
6 > 0 is a constant independent of t and k.

Whence, taking T as 0 < T < p, we obtain:

Thus, by (3.10) and (3.11), we have:

2 2I12 I"lm %+ + 2 +.clul>l "1
t

m-1

And by Gronwall lemma and (A.I), we obtain:

ii
. 2 + +1.12 , c8m-I + lUlIm

where C
8 > 0 is a constant independent of t and k.

(3.11)
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Whence,

() is bounded in L (O,T;Vm)"

IV) Putting in (3.9) w (-A) m-luk( 3)

we obtal n:

lUk(3)I 2 + Uk(3)m-I (Uk’
2 (3) 2

(Uk,U)

Thus by (A.1), (A.2), (3.7), (3.8) and (3.12), we have:

C
9(3) 12 + PtUk(3) 12 ’---+ VtUk(3) 2 -I 12m-1 m V -m

+ .f’.

(3.12)

(3) 2

Then

2 C[Uk(3)12 + 2(p ")lUk(3)Iram-1 lO

where CIO > 0 is a constand independent of t and k. Whence we can assert that

(3)
(uk

is bounded in L (0,T;Vm), (3.13)

C) PASSAGE TO THE LIMIT.

By estimates (3.7), (3.8), (3.12) and (3.13) there is a subsequence of (Uk)keN
what we denote by (Uk)keN and there exists a function u, such that:

u
k

u weak star in L (0,T;Vm) (3.14)

u u’ weak star in L (O,T;Vm) (3.15)

u weak star in L (O,T;Vm) (3.16)

(3) *+ (3)
u
k

u weak star in L (0,T;Vm) (3.17)

By (3.14) and (3.15), for m=2, and since the embedding of V

follows from Aubln-Lions Theorem [I0],
2

is compact in VI, it

whence

Now by (3.16),

L2u
k

u strongly in (0,T;V 1)

L2strongly in (0,T). (3.18)
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L
2Auk’’ Au" weak in (O,T;Vm_2). (3.19)

Thus, by (3.18) and (3.19) we have

weak in (O,T,Vm_2 (3.20)

The above convergences permit us to pass to the limit in the approximate equation

(3.1), as k (R). We then get:

(u" Au- M(lul) ,) (

for each wV in the sense of L2(0,T).

REMARK 1.

theorem

Since the solution u of (2.4) is in C2(0,T;Vm), and by Sobolev’s

H(a) ck()

n
with k < i - k + I, k 0 integer,

then u satisfies (2.4) in the classic sense if we choose m large enough.

d) UNIQUENESS

Let u,v be solutions of (I.I) in the class of Theorem I.

satisfies:

Then t u- v

(3.21)

(3.22)

(3.23)

Taking of scalar product in L2 () of (3.21) by ’, we obtain:

M([u[1 (v",a’)1 0

Now, by (A.I) and (A.2), we have

where - (I -){u{ 2 2
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whence by (A.I),

Thus, we have

Id 2 2 2 2 C 2 2

2 2 2 , C (II 2 2)ds.
0

0 in [O,T]

REMARK 2. In the forthcoming work we will try to study the equation (I.I)

when M(A) has zero points, that is, degenerate case.
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