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ABSTRACT. In this paper we establish the existence and uniqueness of global classical
solutions for the equation which arises in the study of the extensional vibrations of

thin rod, or torsional vibrations of thin rod.

1. INTRODUCTION.

In this paper we study the existence and uniqueness of global classical solutions

of the first initial-boundary value problem for the equation:

2
U T Au - M( fn 'Vul dx)Autt = f (1.1)
in Q = 2 x]0,T[, where 2(32: the boundary) is a smooth bounded domain in Rn, T is a
positive number, Vu is the gradient of u, A is the Laplace operator and M()A), A > O,
is a real valued function with M(A) > p > 0, A > 0, for some p > O. We have
mathematical interest in solving the equation (1.1) by the following reasons.

First, the equation (1.1) with M(X) = 1 arises in the study of the extensional
vibrations of thin rods, see Love [1], and it was studied by one of the authors in [2]
and [3]. Second, the equation (1) with M(X) = )‘o' )‘o = {Z ¢2dx, where ¢ is the
torsion-function arises in the study of the torsional vibrations of thin rods, see
Love [1]. Third, the function M(A) in (l.1) has its motivation in the mathematical
description of the vibrations of an elastic stretched string, that is, the equation:

age = [Vu]dx) Bu = 0 (1.2)
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what for M(A) > p > 0 was studied by Pohozaev [4], Nishihara [5] and Lions [6].
When M(A) > 0 was treated by Arosio-Spagnolo [7], Ebihara-Medeiros-Milla Miranda [8]
and Yamada [9].

In this paper, we establish the existence and uniqueness of global classical
solutions for the equation (1l.1). For that we use the Faedo-Galerkin method and

compactness argument with some technical idea.

2. NOTATIONS, ASSUMPTIONS AND MAIN RESULT.

Let (wj) N be a system of eigen functions of -A which is defined

je

on Hz(ﬂ) n Hé(ﬂ). We denote by V = V() the set of all finite linear combinations

Putting (f,g) = | £(x)g(x)dx, we set ("")m = ((—A)m.,..), m1,2,...,

of (w,)
3 a

jeN ’

then ("")m define an inner product on V. We put Vm = Vm(ﬂ) as the closure of V by

the topology of norm l..s = ("')m° Then we see that

1
HO(Q) Vlé V2 R <=Vm D een,

Vmc ﬂm(ﬂ), m=1,2,..., and the norm "'m is equivalent in V|n to the standard norm

of Hm(ﬂ). We see that all the above injections "¢>'" are compact.
Let T be a positive number and B a Banach space with a norm ""‘B' We shall
represent by LP(O,T;B), 1 € p < », the Banach space of vector-valued functions
€u:]0,t[ * B which are measurable in B and 'Iu(t)IIB € LP(O,T) with the norm

ull?

T
H w||? at
LP(0,1;8) c{ llucerll3

and by ﬂ”(O,T;B) the Banach space of vector-valued functions u:]0,T[ + B which are
measurable in B and IIu(t)I'B € L“(O,T) with the norm

= (t) .
el o g g, = *or ese [lscoly

We denote by CJ(O,T;B) the space of all vector-valued functions u:[0,T] + B,
which are j-times differentiable in the sense of B.
Let M(A), A > 0 be a real valued function such that:

(A.1) M(X) € Cl[O,w) and there exist constants a > 0 and p > 0 that

1/2

verify M()A) > aX + 0, YA € [0,»),
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(a.2) oAt < B(OM() where 8(A) € €°[0,=), B(A) > 0, A > 0, then

we have the following result:
THEOREM 2.1. Suppose that

u u € Vm’ (m > 2), (2.1)

1

f,f' € C(O,T;V_ ). (2.2)
m-

1

Then there exists a unique function u: [0,T] -+ Lz(ﬂ) in the class:

ue cz(o,'r;vm) (2.3)
that verifies

o - du - u(|u[Dree = £ 1n q (2.4)

u(0) = ug (2.5)

u'(0) = u 2.6)

ulag = 0 (2.7

3. PROOF OF THEOREM 1.
We divide the proof in four parts:
a) Approximated solutions
b) A priori estimates
c) Passage to the limit

d) Uniqueness

a) APPROXIMATED SOLUTIONS.

Let [wl,...,wk] be the subspace of V, generated by the first k eigenvectors

of -A.
Let Kk
(t) = (t)w, € (W, ye00,w ]

Y j_zlgjk 3 € [opseeesw

be a solution of the system:

(u" = by - uCu [0, = (£,0) for all w-[w,eeeyw] (.1

uk(O) = ug Y, strongly in Vln as k *> ®, (3.2)
uk(O) = Uy *> Uy strongly in Vm as k > =, (3.3)
k k
where Yok = jzl (uo,wj)wj. Ul ’jgl (ul,wj)wj.
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Then we see that the solution uk(t) exists on an interval [O,Tk), 0 < Tk <T.

priori estimates will permit us to extend uk(t) to all interval [0,T].
b) A PRIORI ESTIMATES

1) Putting w = ¢'(t) in (3.1),
we have
wi2 2 2
lu "o * Coud; + Mo D]} = up.

Thus by (A.1),

2
oy lo - |u§|§ « oy gl . I£loluxlo
MCu [} ouly i
20,2
|
ot s T

o

where C is a positive constant such that 'ua 0 < c'u; 1 Then from this and (2.2),

@ lelg
2

|2 L
Jur|T < 2 (c2 + ) < ¢

where Cl > 0 is a constant independent of t and k.

Thus
(u{) is bounded in LD(O,Tk;Vl). (3.4)

By Fundamental Theorem of Calculus, we have

[ ]
(ui) is bounded in L (O’Tk;vl) (3.5)
and
L]
(uk) is bounded in L (O,Tk;Vl). (3.6)
The above estimates permit us to extend uk(t) to all interval [0,T].
I1) Making v = (-A)m_lui, in (3.1)
we have:

d 2 2 2.0 .12
23 Uoklpy * Tuilg + MCu [ ]ugfg
= w0 (o D ), fug |2+

By (A.2) and (3.6), we have
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M Q| D u ), fup]3 < 8 | Drcu D Jugl, fug]2
2 2
<3 MuIDluilg -
Then integrating from O to t and using (2.1) and (2.2) we obtain:

2 2 2

laglany * lels + Mcu | Dlug|2

< I 2,1 .12

cy+C, ! tlugl? )+ ucfu | Py ]ug|21ae

where C, = C (u T) and C

3 4 - max{l,Cz}.

Thus, by Gronwall inequality and (A.l), we have:
2 2 2
Al 1]
|uk'mrl + 'uk'm + p‘uk‘m <c

where C5 > 0 is a constant independent of t and k.

Whence,
o
(uk) is bounded in L (O,T;Vm), 3.7)

(u}) is bounded in L (0,T;V ). (3.8)
(III) Taking the derivative of (3.1) with respective to t, we obtain:

P - ag - u(u ) 20 P (3.9)
- ZH'('uk‘ )Cuyoul ), bup,w) = (£',w) for all welw ,eee,u ]

Putting in (3.9) w = (-A)""lu;, we have:
7ac Uslay + luilg + MCud Dol
oD Gy lln = e,
Thus by (3.2) and (3.6),
a2+ fugl2 + o | D]
< ZucfuDluf? + Y2 e a2

Integrating from O to t, we have:

wi2 2 2 2
[l oy * lugly + MClu D el
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t
< fleefi e, f (uylay + MCu, | D] uy| e
0

+ '“ﬁ(°)|i-1 + |u lk| + M(|u0k|2)l (0)|2 (3.10)
Ve now estimate |u'(0)| .
Putting w = (-A)m—lu;(o) tn (3.1) and tending t + 0, we obtain:

u "2+ @ ), o)+ uclug, [HH]ur)|?

= (£(0), Uk(O)) 1t
Thus,

1 2 2
?|u0k’m + Ylu;(O)'m

@1y + mlug |D Jepo], <
1 2 1 2
+y [fO |+l @]
for Y > 0.
Then, by (A.1), (2.2) and (3.2), we have
2
|y (o)l + 200 = Moy <
where C6 > 0 is a constant independent of t and k.
Whence, taking Y as 0 < Y < p, we obtain:
lwrcoy | < (3.11)
Thus, by (3.10) and (3.11), we have:
2 2 2 2
lu; m-1 'uélm + M(Iukll)lua
<c,+c, f [[uk o +M(|uk| )|u| lds.
And by Gronwall lemma and (A.l), we obtain:
wi2 2 2
Iuk'nrl + ‘uélm + plu; m < c8

where C8 > 0 is a constant independent of t and k.
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Whence,

(u{) is bounded in L (O,T;Vm). (3.12)

IV) Putting in (3.9) w= (-0 lu (3),

we obtain:
(3);2 ' @3) 2 (3)2
o M CHE N S YT 1) [
. 2 * " 3) ' 3)
+ 20 (Ju ] o), (“k’“k( ), = (£ ’"k( Dy *
Thus by (A.1), (A.2), (3.7), (3.8) and (3.12), we have:

c
o P12 + ol DI < 7+ e P 5 He |z,

1
+ 3wy

(3)|2
m1

Then
3 3) 2
I“k( ).i-l +2p - Y)’“k( )'m <Co

where Clo > 0 is a constand independent of t and k. Whence we can assert that
(3) fd
(uk ) is bounded in L (O,T;Vm), (3.13)

c¢) PASSAGE TO THE LIMIT.

By estimates (3.7), (3.8), (3.12) and (3.13) there is a subsequence of (u, )

k“keN
what we denote by (uk)keN and there exists a function u, such that:

* w©

e + u weak star in L (O,T;Vm) (3.14)
* ©

“ﬂ + u' weak star in L (O,T;Vm) (3.15)
" * " *

e + u" weak star in L (O,T;Vm) (3.16)

“1&3) 3« veak star 1n L'(o,'r;vm) (3.17)

By (3.14) and (3.15), for m=2, and since the embedding of V2 is compact in Vl, it
follows from Aubin-Lions Theorem [10],

u, + u strongly in LZ(O,T;VI)

whence

M(‘uklf) + M('u'f) strongly in LZ(O,T). (3.18)

Now by (3.16),
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2
" " .
Auk + By" weak in L"(0,T;V 2). (3.19)
Thus, by (3.18) and (3.19) we have

MClu | 28w > u(|ulPrau veak tn 12,1,V ) (3.20)

2

The above convergences permit us to pass to the limit in the approximate equation

(3.1), as k *+ =, We then get:
(u" - Au - M(Iu'f)Au", w) = (f,w)
for each weV in the sense of Lz(O,T).

REMARK 1. Since the solution u of (2.4) is in CZ(O,T;Vm), and by Sobolev's

theorem
@ & @
with k < & --; S k+ 1, k > 0 integer,
then u satisfies (2.4) in the classic sense if we choose m large enough.

d) UNIQUENESS

Let u,v be solutions of (1.1) in the class of Theorem 1. Then w = u -~ v

satisfies:
" 2 " 2 2 "
w" - Aw -~ M(lu'l)Aw - [M('vll) - H('ull)]Av =0 (3.21)
w(0) =0 (3.22)
w'(0) =0 (3.23)

Taking of scalar product in L2 (R) of (3.21) by w', we obtain:
Faetlorly + foff + mclulDlorF1 - wcfu [ forl]
2 2
+ (|| D = M(fu P vwty =0
Now, by (A.1l) and (A.2), we have
1d 2 2 2 2
‘5'5;[“"0 + Iull + H(Iull)lw'|l]
Cl 2 12 ' " '
< ZLuclal Do+ we dfaly + olploly bl for],

where £ = (1 - e)lulf + e|v|f, 0<8<1.
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Then,

2 2 2 2 2
%'%Eliw"o + ’w'1 + M(lulf)'“'lll < % (‘“‘1 + 'w'll),

whence by (A.1),

t
o1 3+ o+ oforf? <o ] claf? + o,

Thus, we have

w =0 4in [0,T]

REMARK 2. In the forthcoming work we will try to study the equation (1.1)

when M(X) has zero points, that is, degenerate case.
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