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ABSTRACT. This paper considers existence and uniqueness results for viscosity solutions
of integro-differential equations associated with the impulse control problem for piecewise-
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1. INTRODUCTION.
This paper considers viscosity solutions of integro-differential equations associated with

the impulse control problem for piecewise-deterministic (PD) processes
max(Lu — f,u— Mu)=0in E (1.1)
where
) = = Yo (2)+ o)~ o) (4 = ) Q.

Mu(z) = infi(u(z + &)+ ¢(§)).
s
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146 S.M. LENHART

We consider the cases when E = , a bounded domain in R", and E = R". In the

bounded domain case, we have the following boundary condition:

u(z) = /“u(y)Q(dy,z) for all zedf2. (1.2)

Let us briefly give the background for this problem. A PD process, z(t), with jump rate,
A(z), and jump distribution Q(dy,z), follows deterministic dynamics between random

jumps:
dz(t)
dt

=(91(z()),-.-,9n (2(1))) -

Davis [1] developed the probabilistic side of these PD Markov processes. If the ith jump
of the process occurs at T;, then the distribution of z(T}) is Q (dy,z(T;")) and

t
P(Tisa—T; >t)=exp (—/ A(z(Ti + 9)) ds) .
(]
Davis (1] showed that a PD process is a strong Markov process with generator
3 o(eus, + z) [ (uty) — u(e)) Q. o),
=1
with E, the state space. The boundary condition occurs because the PD process jumps
back into the interior of 2, upon hitting the boundary of Q. The jumps T; are part of the
process, z(t). Consider when certain jumps, “impulses”, are controlled from outside the
PD process. Suppose the state is changed from z to z + £ with impulse £ > 0, and cost
£(€) is incurred when the impulse £ is applied. An impulse control strategy v is a sequence
of stopping times and impulses,
v={01,61102762""}’ (on—’OOBSt—-boo)
The controlled PD process z? satisfies
z%(0; + 0) = z°(6; — 0) + &,. (1.3)
The associated cost function is
00 0o
Je(v) = E, [ / FE*(@) et + Y e(E)e™
0 i=1
The minimal cost function is
V(z) = ix‘x’f Jz(v). (1.4)
Heuristically, the dynamic programming equation satisfied by the minimal cost function is
given by (1.1).
For results on optimal control of PD processes, see Davis [2], Vermes [3], Soner [4],

Lenhart and Liao [5, 6], and Gugerli [7]. See Barles (8] for deterministic impulse control.
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In this paper, we define the notion of viscosity solution of (1.1) and prove existence and

uniqueness results in the viscosity sense. The control representation is discussed in the

last section.

2. UNIQUENESS.

The original formulations of viscosity solution definitions, by Crandall and Lions [9, 10},
did not include integral terms in the operators, so we state the definition extension to this

case.
DEFINITION: ueBUC(E) (bounded, uniformly continuous) (E will be Q or R")
(i) u is a viscosity subsolution of (1.1)if
max (-g,(0)¢, (o) + a(zo)u(zo)

~ A(zo) /E (u(y) — u(20)) Q(dy, z0) ~ f(z0),

u(zo) — Mu(z:o)) <0 (21)
whenever ¢eC'(E) and u — ¢ has a global maximum at zo.
(i) u is a viscosity supersolution of (1.1) if
max (~¢i(zo)¢z,(z0) + a(zo Ju(zo)
= Azo) [ ()~ ulzo)) QU z0) ~ S,
u(zo) — Mu(;ro)) >0 (2.2)
whenever ¢eC!(E) and u — ¢ has a global minimum at z,.
Note that implicit summation on repeated subscripts is used on the ¢, terms above.

We make the following assumptions:

A, f, @ bounded uniformly continuous on E, (2.3)
gi Lipschitz continuouson E, i =1, ... \n, (2.4)
a(z) > a9 >00n E, (2.5)
Az) 20, f(z)>0on E, (2.6)

for each fixed zeE, Q(dy,z) is a probability measure which is Lipschitz continuous as

a function of z, i.e.,

/E¢(v)Q(dy,x) - /E¢(y)Q(dy,z) < CqlldliL= |z — 2| for all geL>(E), 27)

and c(-) is a continuous, subadditive, increasing, positive function on (R*)" with
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c(§) — oo as € — oo, (2.8)
¢(0) = k,
c(€) > k>0forall £ >0. (2.9)

We assume that Q is a smooth bounded domain in R™.
We need an assumption that guarantees

ueC(0) = MueC(Q),

from Lions and Perthame [11], we have the needed assumption:

forall zeQ, {£>0|€6#0, z+£e0Q, Je >0, s.t. Vy > 0,
(2.10)
z+y ¢ Qif ly— €| <e} is empty.
If Q2 is convex, then (2.10) holds.

We now prove comparison results in 2 and then in R" that yield uniqueness results for

equation (1.1).

THEOREM 2.1. Under assumptions (2.3)-(2.10) on R, if u is a viscosity subsolution of

(1.1) on  and v is a viscosity supersolution of (1.1) on § with

ue) < [u)QU2) and )2 [ o()Qdz) foral zeoR,  (211)

then u < v on .

PROOF: Let 0 < p < 1 and set w = pu. There exists z in  such that

(w - v)(2) = max(w - v)(a).
zeQ

First we show that we can choose z so that z ¢ 9. If z € 99, then

max(w - v) = u(z) = o(2) < [ (wly) = v(4)) Q. z) by (211)
< sup(w — v).
If the maximum of w — v does not occur at an interior point, then there exists a set A C Q
such that
Q(A, 2) > 0 and w(y) — v(y) < max(w — v) for all yeA.
Then
| W = v @) < supto - o),

which is a contradiction. So there exists Z €  where the maximum occurs. Thus we can

assume z € .
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Set M = max( |julje, ||V|lw). Define

2
—Cely - z|2

R O

where C, = y/w, (\/2Me) and w, is a modulus of continuity for v. There exists
(z°,y°) € 0 such that
sup ®.(z,y) = . (z°,y°).

Th =l
en
®,.(z,2) = w(z) — v(z) < ®.(2°,¥°)
implies
zt -y z 2 e e €
|+ 0yt =P < ula") - ole) = (0l 02 + 0(e) = w4
<2M.
Refining this estimate gives
|z¢ — y°| < V2Me
and then
z€ — y¢ 2 e 2 & €
. +Cely* - zI* S wo(Iz* - ¥°|)
< wy (\/2M€) .
This implies
z° — ye
" —0ase—0. (2.12)
Also
Cllyt - z|2 S CZ»
and then

ly*—2z| - 0ase—0. (2.13)

Notice also we have for ¢ sufficiently small, 2%,y € Q since z € Q.

Since w is a viscosity subsolution of
max (—-g.-w,,. +ow — A/ (w(y) — w(z)) Q(dy, z) — puf,w — Hw) =0,
Q

Muw(z) = infﬁ(w(i +£) +uC(€))
S

and 2 = w(z) - (o) -

=y
[ 4

2
-C.ly* ~ zlz) has a maximum at z°,
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max (-9:(17‘) (2 (xe ; yz)‘)
+ ala)u(e) M) [ (oly) = 0= Q=) = 1S,

w(z®) — ﬁw(r‘)) <0. (2.14)

Since v is a supersolution of (1.1) and
v oly) - (w(zo)— 2] - o z|’) ,
has a minimum at y,
max (—g-(y‘) (2 (:‘E_, y‘) +2C (v - z)s)
'

+a(y*)o(y®) — My®) /n (v(y) = v(¥°)) Qdy, ¥°) — f(¥°),
v(y*) — Mv(y®)) 20. (215

Cask A. v(y°) > Mv(y°).
There exists ¢! > 0 such that Mv(z®) = v(z® + €') + c(£!). From property (2.10),

Mv € C(R), and Mv(z*) — Mv(y®) can be made small for ¢ small.

€ _yz
€

2
(=, °) < w(=*) - Mu(y®) - | | _Cly - o

ze __yc
€
Sw(z® +€") +pe(€') - (v(=* + &) + <€)
2
= Cely® — 2" + Mv(z*) — Mu(y*).

2
< w(z®) — Mo(z*) - | | —Culy* — 2! + Mu(z®) - Mu(y®)

z¢ —y°
€

Using (4 — 1)e(€') < (u — Dk,

B (2°y") S w(z® +€') —v(z" +€') - Cela® + € — 2|
+Ce (|2 +€ = 2"~ Iy = 2*) + (— 1)k
+ Mv(z®) — Mv(y®).
Hence for ¢ small enough, using (g ~ 1)k < 0,
B, (2%,9°) < Bz + €527 +¢1)

which contradicts our choice of (z¢, y°).
Notice this part is where C, is used.
CasE B: v(y®) < Mv(y®).
Using (2.14) and (2.15),
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a(w(2) ~ o(2)) S a(=) (=) ~ v() + 00(1) + a(yPly*) - a(yo(y")
S ou(1) + afz)u(e) - a(y(y*)
<= 200 -0z (T5L) +560 - use)
(2.16)
=200ty = %= 30) [ (o) = () QUaov)

+3() [ (uly) - () Qa2
S C](l - }l) + 01(1).
(Note that 0,(1) — 0 as € — 0.) See Lenhart [12] for an estimate on such integral terms;

the key idea used is that
1600 = o) = (02) - vt Qe 2%) < 0 (217)
and the integral terms in (2.16) are close to the integral terms in (2.17). Thus we conclude
max (w(2) - (=) < C(1 - ) + oc(1).

Let p — 1,

max (u(z) — v(z)) < 0.(1).

Then let ¢ = 0,

max (u(z) — v(z)) <0. 1
Now we obtain a similar result in R".

THEOREM 2.2. Under assumptions (2.3)-(2.9) on R", if u is a viscosity subsolution of

(1.1) on R" and v is a viscosity supersolution of (1.1) on R™, then
u(z) < v(z) on R"™.
PROOF: Let 0 < é§ < 1. Using notation from proof of Theorem 2.1, choose z such that
w(z) —v(z) > st:p(w —-v)(z) - 6.
K Cely — 2 + | =22[* 2 5max ([lulloe, [0lloo), With Ce = yfw (VZM + 1),
®.(z,y) < 2u(z,2)

(z¢%,y*%). Thus &, does achieve its maximum at a finite point, say at (z¢,y¢) = (z¢%,y%%).
We obtain (2.12)-(2.15) as before, with 2% — y** 0 ase — 0 and § — 0.

CASE A: v(y®) > Mu(y®). By (2.8), there exists £! > 0 such that
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u(y*) > v(y” +€') +e(€!) - H072

and [¢!] < C; where C; depends on ||v]|e but not on ¢,5. Now

¢ _ ,el?
®.(z%,¥°) < w(z®) — v(y°) - Iz . y l —Cely* —2J*

S e+ €) + pele’) ~ oy +€) - e(g) + L)
e _,e]2
Z Y -C. ly."'zlz

€

_y’

2
Sw(z* +6) -y +€) - |2 ’ —Cely +6 -2

FC (W +€ =2 = Iy — =) + S (- 1)
< 8u(f + €6 +6) 4 oes(1) + 3 (s~ 1)

< B (z° + £, y° + €*) for ¢ sufficiently small.

This contradicts the choice of (z¢,y*).

CASE B: v(y®) < Mv(y®) follows as in Theorem 2.1. §

3. EXISTENCE RESULTS.

Due to the possible incompatibility of the impulse obstacle and boundary condition

(1.2), we shall prove existence of viscosity solutions to
max(Lu — f,u — Mu)=0in Q 3.1)
satisfying the boundary condition:
u(z) = Mu(z) A /‘;u(y)Q(dy,:t) for zeAQ (A minimum symbol). (3.2)

Condition (3.2) formally means the state process could jump back into the interior of 2
upon hitting 8Q or an impulse could be used to change the state. We have the following

existence result.

THEOREM 3.1. Under assumptions (2.3)-(2.10) on §, there is a unique viscosity solution

of (3.1) on ) satisfying (3.2).

PROOF: For WeW! (1), by an extension of [5, 12], we have the existence of unique

viscosity solution of
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max(Lu — f,u—¥)=0o0n (3.3)

satisfying
ulz) = ¥(z) A / u(y)Q(dy, z) for zed. (3.4)
Q

We also have the continuous dependence of u on ¢, i.e., if u;,u; are viscosity solutions of

(3.3) satisfying (3.4) with obstacles 1,2, respectively,

“ul - “2"00 < "'/’l - ¢’2"oo

Using this continuous dependence result, we obtain the existence and uniqueness of vis-
cosity solutions of (3.3) satisfying (3.4), for obstacles ¢ in C(Q). Now we will apply this
result with ¢ = Mu, with ueC(Q) giving MueC(Q) by (2.10).

We now construct a sequence which will converge to the solution of (3.1) satisfying (3.2).

Define ug to be the unique viscosity solution of

Lug= fin Q

wo(z) = | va(w)Q(dy, ) on 09

By (2.10), uoeC () implies MuoeC(S2).- Thus there exists a sequence of viscosity solutions,

{ua}2,, satisfying

max(Lu, — f,u, — Mu,_,)=0in Q

un(z) = Mun_1(z) A /‘;u..(y)Q(dy,z) on 9.
By a maximum principle argument on these viscosity solutions, we obtain
0<u,<upy,n=12,....
To get uniform convergence of our sequence, first define a map

a:C(Q) - C(Q) by
o(¥) = u where

u is the viscosity solution of (3.3) satisfying (3.4).
The map T = 0 o M is increasing and concave. We have the following properties for T

There exists A in (0,1) such that Aug < k.
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If there exists Be[0, 1] such that

v —w < fw, then Tv — Tw < (1 ~ X)BTv. (3.5)

See Hanouzet and Joly [13], Perthame [14, 15] and Barles [8, 16] for examples of this

tecunique. Siuce ug —u; = up, we iterate (3.5) to obtain
Up—1 — Up S (1 - X)""uo.

In this way, we obtain uniform convergence, 4, — u. The uniform convergence of u,
insures the convergence of the integral terms and Mu,_;, and we have that u satisfies

boundary condition (3.2).

To show the limit function u is a viscosity solution, we first look at point ro where u —¢
has a global minimum. Then there is a sequence {z,} converging to o such that up, — ¢

has its minimum at z,. Since u, < Mu,_; on §, we know

u < Muon .

If u = Mu at o, then the viscosity supersolution condition (2.2) is satisfied. If u < Mu at z,,

then un(zn) < Mup_1(z,) for n large enough, which implies

—gibe,+ atn =3 [ (un(0) = un(20)) Qe 20) 2 2t 2.
Letting n — oo, we have u is a viscosity supersolution. The subsolution case follows
similarly.
The uniqueness result follows as in Theorem 2.1 except for the case when the maximum

of w — v occurs at zedQ. If

o) 2 [ v(u)ey.a)
then the argument goes as before. If v(z) > Mu(z), then there exists nonzero ¢! > 0 such
that
My(z) = v(z + £') + c(£}).
Then

w(z) - v(z) Sw(z+€') + pe(€') —v(z + €') — c(£1)
Swz+€)—v(z+€)+(u-1)k

<w(z+€) -v(z+¢),

which is a contradiction of the choice of z. §
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The existence proof for the R case is simpler.

THEOREM 3.2. Under assumptions (2.3)-(2.9) on R", there exists a unique viscosity so-
lution to (1.1) in R™.

PROOF: We use the iterative approximation scheme on R",
max(Lu, ~ f,un — Mu,_1)=0in R*, n=1,2,... and Luo = f in R". (3.6)

To obtain existence for (3.6), we use extensions of results from [5, 12] with ¢ in BUC(R").
Note that u,_,eBUC(R") implies Mu,_,e BUC(R"). By using an operator T as in The-
orem 3.1, we obtain uniform convergence of {u"} to a viscosity solution u. The uniqueness

result is Theorem 2.2. §

4. CONTROL REPRESENTATION.

To put the results obtained in section 3 in the context of the classical results on impulse
control (Bensoussan and Lions [17] and Menaldi [18]) we show that the solution obtained
in Theorem 3.2 is equal to the value function associated with the impulse control problem
(1.4).

THEOREM 4.1. The unique viscosity solution u(z) from Theorem 3.2 is equal to the value

function V(z) from (1.4)
PROOF: First, we show that the approximations u, have the following control interpreta-
tion:

un(z) = inf{J:(va) : v, impulse control strategy with §, = oo, for all i > n + 1}, (4.1)
i.e., u, is the minimum cost function associated with the impulse control problem with at
most n impulses allowed. We show (4.1) by induction. Call the right hand side of (4.1),
Va(z). The representation for ug (no impulses) is valid. Assume (4.1) for u,—;. By [5,12],

we have

]
u,(z) = il;fE: [/ f(z(t))e*'dt + Mu,_,(z(8))e>¢ (4.2)
)
where 6 is a stopping time. Let v, be an impulse control strategy with n impulses,
Up = (01’61’“'791176")'

By (4.2), and writing z,(t) = 2 (t) from (1.3),

155
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u,.(:t) S Ez /.l f(zn(t))e—a‘dt + Mun-l(zn(ol - 0))6‘00']
0

0,
<E, [ A f(za(t))e™dt + e~ (up—1(zn(61 — 0) + &) + c(&y ))]

-
<E. ./o f(za(t))e™dt + e7%¢c(£)) (use (4.1) on up_1)

+e~ob E.. (0)+6 (/oo f(z,.(t))e"’("")dt + Ze"’(""")c(fi))]
LA

=2
Therefore
up(z) < Va(z).

To show uy > Vi, for € > 0, choose 6 such that

B [ St 4 o M0 - ) <wale)Hef2 (43)
Using (2.8), choose §; such that
Mup_y(2(8) — 0)) = un_s(z(61 = 0) + &) + (&) (44)
By the inductive hypothesis on un-3(z(8; —0)+§;), there exists an impulse control strategy
Va-1 = (02,62,---10n,6a), 62> 6,

such that
Je0)+6(Va-1) < Un_1(z(6 = 0) + &) +¢/2 (4.5)

By (4.3)-(4.5),
6 -
E, ['/o f(z(t))e ®'dt + e~ Ec0)+6, [/. f(zn—x(i))e"’("")dt

F Y eI (g — e/ 2” <un(z) +¢/2

=1
which implies
Va(z) < Je(vn) < ua(z) + ¢,
where v, = (8;,&),vq-1). This completes the proof of (4.1).
By construction, u, \, u. Thus, by (4.1),

u(z) < i‘I,lf J(vy,) for all n.

For € > 0, there exists a strategy vy, such that
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u(z) < Je(vm) < V(z) + €.

Thus u < V. To show u > V, there exists index J large enough and strategy vj, such that

Je(v)) <uj(z)+€/2 < u(z) +e

and hence V(z) < u(z). §

Similar control representations can be obtained in the bounded domain case.
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