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ABSTRACT. This paper considers existence and uniqueness results for viscosity solutions
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1. INTRODUCTION.

This paper considers viscosity solutions of integro-differential equations associated with

the imptflsc control problem for pieccwise-deterministic (PD) processes

max(Lu f, u Mu) 0 in E (1.1)

where

Lu(z) E g,(z)uz,(x) + a(z)u(x) $(x) IS (u(y) u(x)) Q(dy, x)

Mu(x) inf_(u(x + ) + c()).
>_o
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We consider the cases when E ft, a bounded domain in R", and E R". In the

bounded domain case, we have the following boundary condition:

u(x) jf u(y)Q(dy, x) for all xOfL (1.2)

Let us briefly give the background for this problem. A PD process, x(t), with jump rate,

(x), and jump distribution Q(dy, x), follows deterministic dynamics between random

jumps:
dx(t) (9, (x(t)) (x(t))).
dt

Davis [1] developed the probabilistic side of these PD Markov processes. If the ith jump

of the process occurs at T, then the distribution of x(Ti) is Q (dy, z(T-)) and

(/o’ )P(+ T, > ) ((, + ))d

Davis [1] showed that a PD process is a strong Markov process with generator

i----I

with E, the state spe. The undy condition cs cause the PD press jumps

ba into the nteior of , un hittin$ the undy of . The jumps Td e part of the

prs, x(). Csi&r when certn jumps, "imputes’, e controlled from outside the

PD process. Supse the state is cged from x to x + with impul O, d cost

t() is incurred when the impulse s appli. An impul control strate v is a sequence

of stopping tim d impuls,

(a,, a, ,... }, (a ).

The contro PD press x" satisfi

z’(0, + 0) x(O, 0) + . (1.3)

The iat ct nction is

The minimM cost function is

V() if J,(,). (.4)

HeuristicMly, the dynamic proing equation satisfied by the minim cost function is

iy (1.1).

For results on optimM control of PD presses, s Davis [2], Vermes [3], Soner [4],

Lenht d Li [5, 6], d Gugerli [7]. S Bles [8] for determistic impose control.
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In this paper, we define the notion of viscosity solution of (1.1) and prove existence and

uniqueness results in the viscosity sense. The control representation is discussed in the

last section.

2. UNIQUENESS.

The original formulations of viscosity solution definitions, by Crandall and Lions [9, 10],
did not include integral terms in the operators, so we state the definition extension to this

case.

DEFINITION: tteBUC(") (bounded, uniformly continuous) (E will be f or R")

(i) u is a viscosity subsolution of (1.1) if

m(-,(o),,, (o) + ’(:o),(o)

/E (u(V)- U(Xo))Q(dy, xo) f(xo),A(Xo)

(o)- M(o)) o (2.)
whenever eC (E) d u h a globM mimum at xo.

(ii) u is a co,ity auperaolution of (1.1) if

=(-a(o),,(o) + (o)(o

f ((v)- (o))(dv, o)-/(o),A(xo)

(o)- M(o)) 0 (2.2)
whenever eC (E) d u h a globM minimum at xo.

Note that implicit sumtion on reated subscripts is used on the g, terms above.

We me the followg smptions:

A, f, a bounded uniformly continuous on E,

gi Lipschitz continuous on E, 1,...,

a(z) >_ co > 0 on E,

A(x)

_
O, f(x) > 0 on E,

for each fixed xE, Q(dv, x) is a probability measure which is Lipschitz continuous as

a function of x, i.e.,

/E ()(d’x) -/E ()0(dv, z) < CIIIILooI zl for all OCL(E), (2.7)

(2.3)

(2.4)

and c(-) is a continuous, subadditive, increasing, positive function on (R+)" with
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c({) -- oo as { -4 o,

(0) ,
c({)>_ k>Oforall_>O.

We assume that f is a smooth bounded domain in R".
We need an assumption that guarantees

c(n) Mc(a),

from Lions and Perthame [11], we have the needed assumption:

for allzd, {{>0l{#0, z+’t0Q, 9s>O, s.t. Vy>0,
(2.0)

z+!/Cif[y-[<} is empty.

If D is convex, then (2.10) holds.

We now prove comparison results in fl and then in R" that yield uniqueness rcsults for

equation (1.1).

TXEOrtEM 2.1. Under assumptions (2.3)-(2.10) on l, if u is a viscosity subsolution of

(1.1) on and v is a viscosity supersolution of (1.1) on with

u(z) < n u(y)Q(dy, z) and v(.) >_ n v(y)Q(dy, z) /or all x E OD, (2.11)

then u < v on D.

PROOF: Let 0 < # < 1 and set w #u. There exists z in D such that

(w v)(z) m_ax(w v)(x).

First we show that we can choose z so that z Off. If z E OQ, then

m(- ) (,) (,) < (()- ()) Q(a, ) by (.**)

< sup(w v).

If the maximum of w- v does not occur at an interior point, then there exists a set A C D

such that

Q(A, z) > 0 and w(y)- v(y) < max(w v) for all yeA.

Then

Q(dy, z) < sup(w- v),v(y))

which is a contradiction. So there exists where the maximum occurs. Thus we can

assume z ( t.

(2.s)

(2.9)
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Then

st -- I111-, I1 II-).

,(= ,) ,,,(=) () = - C,l

where C, ,(’) d , is a mulus of continty for v.

(=’, ’) fl su that

There exists

implies

=" - " =
+ c,I/- zl= _< w(=’) ,,(=’) (,(z) ,,(=)) + ,,(=’)

< 2M.

Refining this estimate gives

and then

+ o,1," _< ,,.,,, (1=" u’l)

This implies

OascO.

Also

C,l," =1= < c,=,
and then

lY" zl --" 0 as e: O.

Notice also we have for e sufficiently small, x*, y* E since z E ft.

Since w is a viscosity subsolution of

max (-giw., + aw ) jf (w(y) w(x)) Q(dy, x) #f w .-u,) =0,

Mw(x) inf_(w(x + ) + #C())
e>0

Ce ly zl2 has a maximum at z’,

(2.12)

(2.13)



150 S.M. LENHART

_g.(=,) l: (=" v"

,(,)_ w() _< o. (2.14)

Since v is a supersolution of (1.1) and

---. ,,(v)- ((o)
has a minimum at y,

I’ )xo -_____v C, ItJo zl=

max (-e.(!/’) (2 ( a:" e- !/). + 2C, (/*

+ a(y’)v(y’)- A(y’) fn (v(!/) v(!/’))Q(dy, y’)

v(y’)- My(y’)) > O.

CAS A. ,,(v’) >_

There exists * > 0 such that Mv(z) v(x" + ’) + c(’). From property (2.10),

My 6_. C(fl), and Mv(x) Mv(!f) can be made small for small.

c, Iv" 1

-C, lv’- +(=’)-(’).

u(- z)(’) _< (- z),

(I,,(=’v’) _< =(=" + ’) ,(=" + ’) C,l=" + zl

+ c. (I" + ’- ,l’ -I" t) + (. -)

+ Mv(:r,’) Mv(y’).

Hence for small enough, using (p ]k < O,

which contradicts our choice of (z, V’)-

Notice this part is where C, is used.

CASE B: v(!/) < My(v*).

Using (2.14) and (2.15),
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-< 2 (9’(Ye) 9’(=e))
(2.16)

2g,(y’)C,(y" z)i (y’)/o (v(y) v(y’)) (du, y)

+ x(=’) ((u)-

g c(1- #) + o,(1).

(Note that o,(1) 0 0.) S nhEt [12] for estimate on such integral terms;

the key idea used is that

[(w(y) v(y)) (w(z) v(z))] Q(dy, xe) <_ 0 (2.17)

and the integral terms in (2.16) are close to the integral terms in (2.17). Thus we conclude

max (w(z) v(x)) < C(1 #) + oe(1).

Let/z-,l,

max (u(x) v(z)) < oe(1).

Then let e O,

max(u(x) v(z)) < O. |

Now we obtain a similar result in R".

THEOREM 2.2. Under assumptions (2.3)-(2.9) on R", if u is a viscosity subsolution of

(1.1) on R" and v is a viscosity supersolution of (1.1) on R", then

,,() _< (=) o. R".

PROOF" Let o < $ < 1. Using notation from proof of Theorem 2.1, choose z such that

w(z) v(z) >_ sup(w v)(z) .
If Cely- zl2 + Il > 5mx(ll=ll, Ii,11), with Ce V/W (v/2M + 1),

,(=, v) _< ,(,,)

(Xe,ye*). Thus qe does achieve its maximum at a finite point, say at (xe,y*) (x**, ye*).

We obtain (2.12)-(2.15) as before, with xe yes .._, 0 as --, 0 and 6 O.

CASE A" v(!/e) >_ Mv(ye). By (2.8), there exists 1 > 0 such that
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and I]1 < C1 where C1 depends on IIt, lloo but not on e,6. Now

_< (" + ’) + m() (., + ’) (’) + k(1 ,)

-< ,(" + ’) ,,(v" + T’) , c, Iv" + ]
+ c, (I/+ ’ 1 -I/- 1) + -(, )

_< q,(x" + ],y" + (]) + o,,(1) + 2k-(# 1)

< ,(x" + ], y" + ]) for e sufficiently small.

This contradicts the choice of (x’,y’).

CASE B: v(lf) < Mv(ye) follows as in Theorem 2.1. |

3. EXISTENCE RESULTS.

Due to the possible incompatibility of the impulse obstacle and boundary condition

(1.2), we shall prove existence of viscosity solutions to

max(Lu f, u Mu) 0 in fl

satisfying the boundary condition:

u(z) Mu(z) A L u(y)Q(dy, z) for zeOft (A minimum symbol). (3.2)

Condition (3.2) formally means the state process could jump back into tle interior of ft

upon hitting o or an impulse could be used to change the state. We have the following

existence result.

THEOREM 3.1. Under assumptions (2.3)-(2.10) on f, there is a unique viscosity solution

of (3.1) on ft satisfying (3.2).

PROOF- For eW’(), by an extension of [5, 12], we have the existence of unique

viscosity solution of
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max(Lu f, u ) 0 on 12 (3.3)

satisfying

A L u(y)Q(dy, x) for ze0f/. (3.4)

We also have the continuous dependence of u on , i.e., if ul, u2 are viscosity solutions of

(3.3) satisfying (3.4) with obstacles 1,2, respectively,

II,= ,=Iloo _< II, =Iloo.
Using this continuous dependence result, we obtain the existence and uniqueness of vis-

cosity solutions of (3.3) satisfying (3.4), for obstacles in C(12). Now we will apply this

result with Mu, with uC(12) giving MuC(12) by (2.10).

We now construct a sequence which will converge to the solution of (3.1) satisfying (3.2).

Define u0 to be the unique viscosity solution of

Luo f in R

u0(z) / u0Cy)QCdv, z) on Of/.

By (2.10), u0eC(12) implies Mu0eC(12).. Thus there exists a sequence of viscosity solutions,

satisfying

max(Lu,, f, u,, Mu,-l) 0 in 12

,.() M,,._() ^ [ .(v)Q(dv,) o On.
do

By a maximum principle argument on these viscosity solutions, we obtain

0

_
u,,

_
u._l, n 1,2,

To get uniform convergence of our sequence, first define a map

cr" C(12) --, C(12) by

() u where

u is the viscosity solution of (3.3) satisfying (3.4).

The map T a o M is increasing and concave. We have the following properties for T:

There exists A in (0,1) such that Au0 <_ k.
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If there exists e[0,1] such that

v w _< w, then Tv Tw <_ (1 A)/Tu. (3.5)

See Hanouzet and Joly [13], Perthame [14, 15] and Barles [8, 16] for examples of this

technique. Siuce u0 ul

_
-0, ve iterate 3.5) to obtain

In this way, we obtain uniform convergence, u,, --, u. The uniform convergence of u,

insures the convergence of the integral terms and Mu,_l, and we have that u satisfies

boundary condition (3.2).
To show the limit function u is a viscosity solution, we first look at point x0 where u-

has a global minimum. Then there is a sequence {x, } converging to x0 such that u,

has its minimum at x,. Since u, < Mu,,_l on fl, we know

u < Mu on f.

If u Mu at x0, then the viscosity supersolution condition (2.2) is satisfied. If u < Mu at x0,

then u.(x.) < Mu._(x.) for n large enough, which implies

A lft (u.(y)- u.(x,,))Q(dy, x.) >_ f at x..

Letting n , we have u is a viscosity surlution. The sublution c follows

similly.

The uniquene result follows in Threm 2.1 except for the ce when the maximum

of w v curs at zeO.

v(z) v(y)Q(dy,x)

then the gumentg fore. v(z) My(z), then there exists nonzero 0 su
that

My(z) v(z + ) + c().

Then

,(z) () < ,( + ) + ,() ( + p) ()

< ,( +) ( +) + ( )

<(+) (z +

which is a contradiction of the choice of z. 1
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The existence proof for the R case is simpler.

THEOREM 3.2. Under assumptions (2.3-2.9 on R", there ests a unique viscosity so-

lution to (1.1) in Rn.

PROOF" We use the iterative approximation scheme on Rn,

max(Lun f, u, Mun_) 0 in Rn, n 1, 2,... and Luo f in Rn. (3.6)

To obtain existence for (3.6), we use extensions of results from [5, 12] with b in BUC(Rn).
Note that un_1eBUC(Rn) implies Mun_IeBUC(R). By using an operator T as in The-

orem 3.1, we obtain uniform convergence of {un} to a viscosity solution u. The uniqueness

result is Theorem 2.2. |

4. CONTROL REPRESENTATION.

To put the results obtained in section 3 in the context of the classical results on impulse

control (Bensoussan and Lions [17] and Menaldi [18]) we show that the solution obtained

in Theorem 3.2 is equal to the value function associated with the impulse control problem

(1.4).

THEOREM 4.1. The unique viscosity solution u(z) from Theorem 3.2 is equa/to the value

function V(x) from (1.4)

PROOF" First, we show that the approximations un have the following control interpreta-

tion:

un(x) inf{J.(v,)’vn impulse control strategy with 8, , for all _> n + 1}, (4.1)

i.e., u is the minimum cost function associated with the impulse control problem with at

most n impulses allowed. We show (4.1) by induction. Call the right hand side of (4.1),

Vn(x). The representation for u0 (no impulses)is valid. Assume (4.1) for Un-:. By [5,12],
we have

Un(X) ifE J’(z())e-’d + MUn_:(.(O))e-’ (4.2)

where 0 is a stopping time. Let Vn be an impulse control strategy with n impulses,

v. (01,6,...,0,,,).

By (4.2), and writing xn(t) xv’(t) from (1.3),
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Therefore

..() <_ v.().

To show u. _> Vn, for > 0, choose 8, such that

(4.3)

Using (2.8), choose 1 such that

M.._,(.(O, 0)) ,,._,(.CO, o) + ,) + (,). (4.4)

By the inductive hypothesis on u.-,(z($1-0)+), there exists an impulse control strategy

v._] (S,,,,... O > 01,

uch that

(4.5)

where v. (0,, ,, v._] ). This completes the proof of (4.1).

By construction, u. u. Thus, by (4.1),

u(z) < inf Jz(v.) for all n.

For e > 0, there exists a strategy vm such that
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,,(,) _< J,(.) < v(.) + e.

Thus u _< V. To show u _> V, there exists index j large enough and strategy v, such that

,() < .() + 12 < .() +

and hence V(z) _< u(z). |

Similar control representations can be obtained in the bounded domain case.
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