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ABSTRACT. The clique polynomial of a graph is defined. An explicit formula is then

derived for the clique polynomial of the complete graph. A fundamental theorem and a

reduction process is then given for clique polynomials. Basic properties of the

polynomial are also given. It is shown that the number theoretic functions defined

by Menon are related to clique polynomials. This establishes a connection between

the clique polynomial and decompositions of finite sets, symmetric groups and

analysis.
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I. INTRODUCTION.

The graphs considered here are finite and without loops or multiple edges. Let

G be such a graph. We define a clique in G to be a subgraph of G which is a complete

graph. It is not necessarily maximal. A clique cover (or simply, a cover) of G is a

spanning subgraph of G whose components are all cliques, i.e., a node disjoint set of

cliques which cover all the nodes of G. With every clique in G, let us associate

an indeterminate or weight wa, and with every cover C, a weight

w(C) n w
a

where the product is taken over all the elements of C. Then the clique polynomial of

G is
w(c)

where the summation is taken over all the covers of G.

Let us give each clique with n nodes a weight w Then the (general) cliquen

polynomial is denoted by K(G ), where (w I, w2, w
3

is a general weight vec-

tor. This polynomial is a polynomial in the indeterminates w I, w2, etc. If we put

Wn w, for all values of n (i.e., _w (w, w, w, ...)), then the resulting polynomial

is called the simple clique polynomial of G. This polynomial is denoted by K(G w).
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We derive explicit formulae for the general and simple clique polynomials of the

complete graph and for their generating functions. A reduction algorithm is then

given for clique polynomials. We show that a number-theoretic function defined by

Menon [3] is really the clique polynomial of a complete graph, when weights are

assigned in a particular manner. Finally, we establish some interesting connections

between the clique polynomial and various combinatorial results. Central to this

section of the article is Menon’s paper [3].

In the material which follows, we denote the generating function for K(G

(with indicator function t) by K(G H, t). Lower limits of summations are zero unless

otherwise defined. When unspecified, upper limits are infinity, or the largest value

of the variable which makes sense in the context of the summand. For brevity, we write

k(G) for K(G ;w).

2. CLIQUE POLYNOMIALS OF COMPLETE GRAPHS.

If, instead of cliques, we take the components of a cover of G to be members of

a general family F of connected graphs, then the resulting polynomial is called the

F-poZnomaZ of G. We will not give an independent derivation of the generating

function for the clique polynomial of the complete graph. Instead, we use a result

given in Farrell [I] (Theorem I) on the generating function for the general F-poly-

nomial of the complete graph.

LEMMA 1.

The generating function for the F-polynomlal of the complete graph is

)tp
t
i

F(Kp P i wi
F(Kp;, t)-Z exp[ Z if’ )]

p P

where #i is the number of spanning subgraphs of K
i
which are members of the family F.

In the case of the clique polynomial, i is the number of spanning subgraphs of

K
i
which are complete graphs. Thus #i I, for all i. Hence we get the following

result.

THEOREM I.
wi ti

K(Kp;, t) exp[ Z ii’

t
p

The following corollary is obtained by extracting the coefficient of p!

COROLLARY 1.1.
P w

i
j
i

K(Kp;W)_ -p! Z[i.l i.n (.). 1,

where the summation is taken over all solutions of Z i Ji p
i

We can obtain a recurrence relation for K(Kp ) from Theorem I, using standard

techniques (or by direct substitution into Theorem 3 of [3]). This is given in the

following theorem, in which the Blissard notation (see Riordan [4]) is used.

THEOREM 2.

Kp w(K + w) p-I

r
with Kr K(K

r ;_w) and w E Wr
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Results for the simple clique polynomial of K can be obtained from the above
P

results by putting (w, w, w From Theorem I, we get

THEOREM 3.

K(Kp;W, t) exp[w(exp t I)1

This generating function is also the generating function for Stirling numbers of

the second kind (see [4], page 32). We denote the k-th Stirling number associated

with n, by S(n,k). Hence we have the following interesting result.

THEOREM 4.

P kK(Kp w) Z S(p,k)w
k

The following corollary is immediate.

COROLLARY 4.1.

The number of clique covers with cardinality k in the labelled complete graph K
P

is S(p,k).

From Theorem 2 we obtain the following corollary.

COROLLARY 2.1.

Kp w(K + I) p

where Kr E K(K
r w)

3. THE FUNDAMENTAL THEOREM AND ALGORITHM

Let e be an edge in a graph G. We say that e is (clique) incorporated in G if e

is required to belong to every clique cover of G as part of a component K for n 2.
n

If a graph G contains an incorporated edge, G is called a restricted graph. We

normally use an asterisk to denote such a graph. Let H be a subgraph of G. Th’em

denotes the graph obtained from G by removing the nodes of H. In order to distinguish

between the trivial complete graphs with one and two nodes (i.e. a node and an edge)
and the non-trivial ones with more than two nodes, we call K a proper complete graph,

n

when n > 2. A proper (clique) cover is a cover in which all components are proper

complete graphs.

Let e be an edge of G. We can put the covers in G into three classes (i) those

not containing e, (ii) those in which e is a component and (ill) those in which e is

part of a proper complete graph. These considerations lead to the followlng theorem,

called the Fundamental Theorem for clique polynomials.

THEOREM 5.

Let G be a graph containing an (unincorporated) edge e. Let G" be the graph

obtained from G by deleting e, G" the graph obtained from G by removing the nodes at

the ends of e and G* the graph obtained from G by incorporating e. Then

k(G) k(O’) + w2k(G") + k(G*).
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An illustration of the Theorem

The diagram is self-explanatory. The internal arrows indicate the edge e. The

asterisk indicates the incorporated edge e.

Figure

The following corollaries are easily deduced from the definitions and Theorem 5.

COROLLLARY $. I.

If G has no triangles, then k(G*) 0. Therefore

k(G) k(G’) + w2k(G").
COROLLARY 5. 2.

If e is adjacent to an incorporated edge, then k(G") O. Therefore

k(G) k(G’) + k(G*).

The following theorem gives a technique for finding clique polynomials of

restricted graphs.

THEOREM 6.

Let G* be a restricted graph containing an incorporated edge e. Then

k(G*) r. w
n (G-Hn)

where H is a clique of G with n nodes (n > 2) and containing the edge e, and the
n

summation is taken over all such clique subgraphs of G.

PROOF.

Let e be part of a clique H
n
with n > 2 nodes Then the weight of Hn as a compo-

The rest of the cover is a cover of the graph G-H Thenent of clique cover is w
n n

result can therefore be deduced

If we restrict the cliques to K and K2, then the clique polynomial becomes the

matching polynomial (see Farrell [2]). The matching polynomial of G is denoted by
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The following result is straightforward, kl(G) counts proper clique covers.

THEOREM ?.

(i) m(G) -k(G; (wI, w2, 0, 0, 0)).

(li) k1(G) k(G; (0, 0, w3, w4 Wp)), where p is the

number of nodes in G.

If G does not have triangles (i.e. G is triangle-free) then the only elements that

a cover of G can have are K and K2. It follows that every clique cover is a match-

ing in G. Hence we have the following result.

THEOREM 8.

If G is a triangle-free graph, then

k(G) re(G)

Theorem 5 yields an algorithm for finding clique polynomials of arbitrary graphs.

We simply apply the theorem recursively, until we obtain graphs Hi, for which k(Hi)
is known. This algorithm is called the Fwulamental AlgoPthm for clique polynomials

or for brevity, the reduction process. We illustrate this igorlthm using the graph

G in Figure I. Notice that Corollaries 5. I, 5.2 and Theorem 6 can be very useful

when applying the reduction process.

From Figure we get
4

k(G) m(HI) + 3w2(wl(wl
2 + w2)) + w2k(K3) + r. k(G*),

i-I i

5 3 2
Clearly, m(HI) w + 4w w2 + 3WlW2

3
and k(K3) w + 3WlW2 + w3

From Theorem 6,

Also

k(G*) w3([) + "3 ([) + 4(’)

2w3(wl
2 + w2) + WlW4 2w12w3 + 2w2w3 + WlW4,

k(G2* w3(o o) + w3(o-) + w3(" ") 3w12w3
From Corollary 5. I,

k(G3* k(G4*) 0

Therefore we get, after simplifying,

3w
2

5w12w3 2
k(G) w15 + 8w + + 9WlW2 + 3w2w3 + W lW4

4. SOME BASIC PROPERTIES OF CLIQUE POLYNOMIALS

The following theorem is called the Component Theorem for clique polynomials.

can be easily proved.

THEOREM 9.

Let G be a graph consisting of r components G I, G2, Gr. Then

It
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r
k(G)- n k(Gi)

i=l

Suppose that wrl Wr2 Wrn is a term in k(G) with non-zero coefficient. Then

G has a clique cover consisting of the components Kri(i I, 2 n). Consider

the component Km, where m ri, for some 0 < i n. This could be replaced by

"smaller" clique covers. The weights of these covers will be the terms of k(Km).
Hence we have the following theorem.

THEOREM I0.

If k(G) contains a term in wr wr wr with nonzero coefficient, then every
2 n

term of the polynomial wrl Wr2 Wrj-i Wrj+l wrn k(Krj) also occurs in k(G)

with nonzero coefficient, for J I, 2 n.

The following theorem characterizes complete graphs in terms of clique polynomials.

THEOREM II.

Let G be a graph with p nodes. Then G is a complete graph if and only if k(G)

contains the term w
P

5. CONNECTION WITHMENON’S FUNCTIONS

Let S be a finite set with cardinality n. Let f be a function defined on all

finite sets and depending only on the number of elements in the set; so that f(S) can

be written as f(ISl) f(n). Let D be a partition of S with k elements. We extend

the definition of f to all partitions of S by

k k
f(D) H f(Si) n f(ni)

i-I i-I

where S
i

is an element of D with n
i

elements, and the product is taken over all the k

elements in D (IDI k)

Next, we define the function F on finite sets S by

F(S) Z f(D)
D

where the summation is taken over all the partitions D of S. We refer to the

functions f and F as Menont8 notio8. These functions were defined in [3].

A correspondence between the structures of this section and that of Section can

be established by letting f be the weight function f(S) Wls I, D be a cover C of some

graph G, and
f(D) w(C)

Finally, F(S) corresponds to the clique polynomial of G, i.e.,

F(S) Z w(C)

Since all the elements are equivalent, all the nodes of the corresponding graph G

must be equivalent. Therefore G must by K The following theorem formalizes ourn

discussion.

THEOREM 12.

Let f and F be the two Menon functions defined above and let S be a set with
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cardinality n. Then

(i) f(k) wk

and (ii) F(S) K(K
n ;w_)

where w- (f(1), f(2), f(3)

This result can be formally proved by equating the expression for F(n) given in

[3] (Equation 2.6) with the expression for K(Kn ) given in Corollary 1.1.

The following corollary is immediate from Theorem 12, by using the generating

function given in Theorem I, and denoting it by G(t). This result is also given in

[3].

COROLLARY 12.1.

where

t
n

C(t) g F(n) T" eg(t)
n

t
i

gCt) z w
i i-f

i-1

From Theorem 2, we obtain the following recurrence for F(n), in which the Blissard

notation is used.

COROLLARY 12.2.

Fn f(F + f)n-I

where F
r -= F(r) and fr _= f(r)

This corollary is equivalent to the recurrence given in [3] (Equation 4.1), which

was obtained by a combinatorial argument.

6. SOME APPLICATIONS.

The clique polynomial can be applied to enumerating problems connected with the

decompositions of finite sets. For example, by giving each clique a weight of I, in

the clique polynomial of Kn, we can obtain the total number of partitions of a set

with n elements. Also, the coefficient of wk in the simple clique polynomial of K
n

will be the number of partitions of the set into k elements. These results are stated

formally in the following theorem.

THEOREM

Let Dk(n) be the number of partitions of a set of n elements into exactly k

elements and D(n), the total number of partitions of S. Then

(i) Dk(n) coefficient of w
k

in K(K
n

w) S(n,k)

and (ii) D(n) K(K
n ;w)

where w (1, 1, 1, ...)

Theorem 13 can be easily proved. Alternatively, the result follows from Theorem

and Equations 5.4 and 5.5 of [3].

The clique polynomial can also be applied to certain problems in elementary

analysis. This is clear from the following theorem, which is also given in [3], in

terms of Menon’s functions.

THEOREM 14.

Let h be a function of the single variable x, on the complex numbers, and let the
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kth derivative h
(k) (x) of h(x) exist for k I, 2 n.

Then

d
n

(eh(X)) eh(X)K(K
dx
n n ;w)

where w (h(1)(x), h(2)(x), h(3)(x)
PROOF.

We will use the result given in Theorem I. Give each clique with i nodes a weight

Put

wi- h(1)(x)

g(t) t
i

t
i

E w
i

E h (i)(x)
i=l i=l

h(x + t) -h(x), from Taylor’s Theorem.

Then from Corollary 12. I, we get

G(t) exp[g(t)] exp[h(x + t) -h(x)] e-h(X)eh(x+t)

t
n

The coefficient of T in G(t) (using the Taylor expansion of eh(x+t)) is

e-h(x) d{xn eh(X))
But G(t) is the generating function for K(Kn _w). Therefore

K(;H) e-h(x) dxn eh(x

Hence the result follows.

Menon has used the functions in order to obtain various enumeration theorems about

symmetric groups. Thus the clique polynomial of K
n

can also be applied to these kinds

of enumeration problem. This is not surprising, since Theorem 4 of [1] establishes

a connection between the F-polomial of K and the cycle index of the symmetric group
n

on n elements.

The connection between the clique polynomial and Menon’s functions is an important

one. Menon’s functions were abstract number theoretic functions. Now they have been

given a tangible combinatorial foR. This we hope will contribute to the use of the

functions in enumerative problems.
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