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ABSTRACT. In this paper we find exact solutions for linear ordinary differential equa-

tions of any order when they are given in matrix form, as well as for classes of Riccati

matrix equations with two or three arbitrary matrix coefficients. Other nonlinear sys-

tems of triangular form are also solved completely.
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1. INTRODUCTION.

A linear equation of finite order can be written as a system having a number of

dependent variables equal to the order. Letting each successive one be the derivative

of its predecessor, the number of equations will be the same as the order. This can

then be put in matrix form.

For example, the linear equation of order n

x (n)
ao(t)x a (t)x’ +

is equivalent to the system

XI X2

=X
3

X
2

X’ a0xI
+ a x

2
+

n 1

(n-l)
+ a (t)x (1.1)

n-1

+ an_iXn

(I .2)

which can be written as

X’ =AX

where X (xl,x2 xn) and A

0 0

0

0

a aao n-1

We will also treat Riccati matrix equations with two or three arbitrary coeffi-

cients and some other nonlinear systems.
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2. LINEAR ORDINARY DIFFERENTIAL EQUATIONS.

For convenience we will assume that all matrices are nxn with elements which are

continuous functions of the same variable throughout this section.

The general solution of the linear equation

X’ A X B (2.1)
with matric coefficients A,B can be found from a nonsingular solution Y of the cor-

responding homogeneous equation

X’ =AX

by the variation of constants technique as follows: Subs.titute X YC

Y’C YC’ AYC YC’ AYC B.

From (2.3) we get

(2.2)

in {2.1} to get

(2..%)

Thus it suffices to consider equation of homogeneous forms.

Now when A T is a triangular matrix we have the following.

THEOREM 2.1. The equation

X’ TX, T (tij(x)) (2.7)

is solvable by quadratures if T is a triangular matrix with all zeroes above the main

diagonal.

PROOF. Consider the equation

y’ Ty (2.8)

t (x)y for YI"where y is a vector. We solve the first equation Yl II Using y

t (x)y + t (x)y2 etc. In each instance wewe then solve the next equation Y2 12 22
solve a simple linear first-order equation and in each case we find all solutions. Take

n linearly independent solutions of (2.8) and write them as n columns. This matrix,

called a fundamental matrix of solutions, is a solution of the associated matrix equa-

tion (2.7). In the remainder of this section the independent variable x will be under-

stood but not written. Other results for triangular matrices include

THEOREM 2.2. If S is invertible, Q is nonsingular and S-IQs is triangular, then

the equation

SX’ QSX + T (2.9)

is solvable by quadratures for any matrix T.

PROOF. Let S-1QS E, a triangular matrix. Multiplying (2.9) by S -1 we get

X’ EX S-IT.
First we can solve

X’ =EX

by Theorem (2.1).

Then we solve (2. i0) by variation of constants.

THEOREM 2.3.

solve

for any C.

(2.10)

(2.11)

If A is invertible, B is nonsingular and A-IB is triangular, we can

AX’ BX + C (2.12)

YC’ B (2.4)

C [ Y-l(s) B(s)ds + c (2.S)

X Y(I Y-l(s) B(x) dx + c] {2.6)
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-1PROOF. Multiply (2.12) by A and proceed as in proof of Theorem 2.2.

COROLLARY 2.4. If A is invertible B is nonsingular and A-1B is trinagular, we

can solve

AX’ BX. (2.13)
We will say a matrix is continuous if each of its elements is a continuous function.

In the next theorem we assume the matrix is continuous.

We now state and prove the main result of this paper.

THEOREM 2.5. Let F be an invertible, continuous matrix. Then the equation

is solvable by quadratures.

PROOF.

Y’ FY (2.14)

LEMMA 2.6.

The system

We begin with the following.

Let T be a nonsingular triangular matrix and let S be a nonsingular matrix.

Multiply (2.19) by TU-B and simplify to get

U BV + W T(tTV AW) S

-i

equat ion

V (TU-B)-Iu (TU-B)-Is (TU-B) {I-TA)W. {2.19)

(2.20)

X’ =Y
(2.15)

Y TX-S

s solvable by quadratures.

PROOF OF LEM 2.6. First we note that

X’ TX-S. (2.16)

The solution of (2.16) can be obtained from the solutions of Equation (2.7) by Lagrange’s
variation-of-constants method referred to in the proof of Theorem (2.2).

Each solution of (2.16) yields a unique solution of the system (2.15), since T is

non-singular, by use of the relation

Y TX-S. (2.17)

This completes the proof.

For statement of the next lemma let us assume momentarialy that TU-B is nonsingular

for some matrices U and B.

LEMMA 2.7. For any matrices A, B, U, V and W the pair of matrices

X UV + AW, Y U BV W

is a solution of the system (2.15) if and only if:

{U(TU-B)-Iu U(TU-B)-Is + [A + U(TU-B)-I(I-TA)]W}’

[I + B(TU-B)-I]u + B(TU-B)-Is + [I + B(TU-B)-I(I-TA)]W. (2.18)

Here is the identity matrix.

PROOF OF LEMMA 2.7. (IF) Assuming that (2.18) holds we first define V by the
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Define X,Y by

X= UV+AW

Y=U+BV+W
(2.21)

to get

Y=TXoS

Then note that (2.18) can be written as

X’ =Y.

(ONLY IF). On the other hand, if (2.21) satisfies the sy’stem(2.15) we eliminate

from the equation

(2.22)

(2.23)

U BV W T(UV + AW) S (2.24)

and substitute its value in (2.21).

We then see that the equation (2.18) is equivalent to (2.23). This completes the

proof.

PROOF OF THEOREM 2.5. By the foregoing we may assume that F is not triangular.

As usual ZI will denote the determinant of Z and stands for the identity.

"Since F is nonsingular there is a nonsingular A such that FA is non-

singular and a lower triangular T (tij) such that TIA1
is also nonsingular.

This is accomplished by imposing nonvanishing restrictions on ITA-II aua FA-I
as in the below.

Define P by the equation

(FAI-I) (TIAI-I) (2.25)

Now since F # T and P is nonsingular, F-PT is nonzero and in fact the

coefficient of tll is nonzero in F-PTII. Accordingly, F-PT can be made non-

singular by restricting t II"
Let C

1
be such that CI-AI, TICI-I are nonsingular. The nonsingularity of

(I-P) (F-PTI)C1
can be obtained from that of F-PT by restricting an element of CI.

Let B be such that the pair U A
1

+ CIB I, B B is a solution of

(FU-B) (TIU-B)-I p. (2.26)

-1
The value of B

1
must be [(I-P) (F-PT1)C1] (F-PT1)A1. Since

(TICI-I) [(I-P)-(F-PT1)C1 ]-1 is nonsingular an element of F-PT
1

can be chosen so that

Tl+ (T1CI-I) (I-P) (F-PT1) C1] -I(F-PT1
will be nonsingular. Then TIA + (TICI-I)BI is nonsingular and moreover (2.26) is

satisfied by U AI+CIBI B B I. Finally an element of F-PT can be chosen so

that (CI-A)[(I-P)-(F-PTI)CI]-I(F-PTI) is nonsingular. It follows that

A
1

+ (CI-AI)B 1
is nonsingular.

At this point we assume that all choices have been made for the elements of AI,
T and C

In summary, the nonsingularity of FAI-I TIAI-I is obtained by restricting a

single element of AI; nonsingularity of F-PT
1 by restricting tll nonsingularity

of CI-Al, TICI-I and (I-P)-(F-PTI)C by restricting elements of C and finally in

the last two cases by use of elements of F-PT I. That this is possible can be seen by



LINEAR AND RICCATI MATRIX EQUATIONS 135

requiring that the product of all eight (8) determinants be nonzero.

We define S by the equation

PS (I-P)U, U AI+C1B 1. (2.27)

REMARK. Equations (2.25), (2.26) and (2.27) imply that the last expression in (2.18)
of Lemma 2.7 is the result of multiplying the first one on the left by F.

Now let (X ,Y1 be a solution of (2.15) with S $1, T T 1.
We then seek a pair (V1,W1) such that

X UV
1

+ AIW

Y1 U + BIV + W

U AI+CIB1

(2.28)

Since A (C1-A1)B1
is nonsingular, we can solve for V1,W1.

By [emma 2.7 we have that (2.18) is satisfied. This in conjunction with the Remark

above yields that U(TIU-B1)-Iu U(TIU-B1)-Is1 [AI+(TIU-B1)(I-TIA1)]W is a solution

of the equation of the theorem.

EXAMPLE. Let n 2 and F (fl (x) f2(x)], T1 tl 0

fs(x) f4(x) t
2

t
Take A al a2 [.

a
3

a
4

Both quantities Fal-I! and ITI- can be made nonzero by restrictions on a as

is readily seen by expanding them. Likewise setting P Pl P2 and expanding

P3 P4
[F-PTI[ the coefficient of t is [Pit 3 Plf4 + P3f2 In this connection we note

in general that [F-FFI[ -]P[Ip-IF TI[ since P is nonsingular.

We conclude this section with a result needed in the next.

THEOREM 2.9. Let U be a nonsingular solution of X’ AX and let V U-1

is a solution of X’ -XA.

PROOF. VU I

V’U + V’U 0

V’U + VAU 0

V’ -VA.

3. RICCATI MATRIX EQUATIONS.

Throughout this section al__l matrices are nxn matrices whose elements are func-
tions of the same variable in each theorem. e theorems of the last section yield
the following.

HEOREM 3.1. For any nonsingular matrices F,G the equation

X’ XFX + XG 0 (3.1)
is solvable by quadratures.

PROOF. For given F,G, let A,B,C be nonsingular matrices such that

F C-1B, G C-1AC C-1C (3.2)
and consider the set of equations

then V
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From (3.3) we get

so that

U’ =AU+B

UV=C

V’ VC-IBv V(C-IAc-C-Ic’) 0

V’ + VFV + VG 0.

To solve the given equation choose any C and solve (3.2) for A and B.

Use Theorem 2.S of the last section to solve for U- from which we get V from

(3.3).

THEOREM 3.2. For nonsingular P,Q,R the equation

X’ + PX + XQX + XR 0

is solvable by quadratures.

PROOF. For given P,Q,R let F,G,H be such that

H-IH P, FH Q, G R. (3.4)

Note that if is a solution of

X’ + XPX + XG 0

then W’ + H-IH’w + FHW + WG 0. To solve the given equation, use Theorem 2.6 to find

H from the first equation of (3.4). Then get F and" G from (3.4).

Finally, use the preceding theorem and its proof to get HW, from which we deter-

mine W.

4. NONLINEAR SYSTEMS.

In the last section some nonlinear equations were solved. Let X be a vector and

let F be a vector function. Call the system of differential equations

X’ FCX) C4.1)

triangular if the k-th component of F is a function of the first k components of X.

THEOREM 4.1. If X’ FCX) is triangular we can solve it by quadratures.

PROOF. x{ F1 (Xl) is solved by separation of variables. Then x_ F2CXl,X2)
is solved by the methods used in [i]. x3 and all other xi, i 4,5 n, are

determined likewise.
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