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ABSTRACT. An anticommutative semiring is completely characterized

by the types of multiplications that are permitted. It is shown

that a semiring is anticommutative if and only if it is a product

of two semirings R and R2 such that R is left multiplicative and

R
2

is right multiplicative.

KEY WORDS AND PHRASES. Semiring, anticommutative, isomorphism.

1980 AMS SUBJECT CLASSIFICATION CODES. 16A78

A semiring is a non-empty set R equipped with two binary

operations, called addition + and multiplication (denoted by

juxtaposition), such that R is multiplicatively a semigroup.

additively a commutative semigroup and multiplication is

distributive across the addition both from the left and the right.

A semiring R is called anti-commutative if and only if for

arbitrary x, y e R the relation x y always implies xy yx.

Let R and R
2

be semirings, then RlXR2 is the semiring with

the following operations:

(Xl’ x2) + (YI’ Y2 (Xl + YI’ x2 + Y2 )

(Xl’ x2) (Yl’ Y2 (XlYl’ x2Y2)"
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Suppose R is a commutative semigroup under +, and if we

define multiplication in R of type

(T1) xy x for all x,y E R

or

(T2) xy y for all x,y E R,

then it is easily seen that R is an anti-commutative semiring.

A natural question that arises is the following: Suppose R

is an anti-commutative semiring. Does the multiplication in R

have to be of type (T1) or (T2)? to answer this question, we

prove the following:

THEOREM 1. A semiring R is anti-commutative if and only if R

is isomorphic to R x R
2.

where R is a semirlng with

multiplication of type (T1) and R
2

is a seniring with

multiplication of type (T2).
We shall need the following lemma, whose proof is contained

in [1,p.75]. to prove Theorem 1.

LEMMA. Let R be an anti-commutative semiring, then for arbitrary

x, y, z, R we have
2(i)

(ii} xyz xz

PROOF OF THEOREM 1. Since R is non empty, let aER. Set R Ra

and R
2

aR. By using the lemma, it is obvious that Ra and aR are

semirings and multiplication in Ra is of type (T1) and

multiplication in aR is of type (T2).
Let f" R Ra x aR, such that for each xER.

f(x) (xa,ax}.
then for yR, f(y) (ya,ay).

f(x+y) (x+y)a, a(x+y) (xa + ya, ax + ay)

(xa,ax) + {ya,ay)

f(x) + f(y).

f(xy) (xya. axy)

(xaya, axay) [By part (ii) of the Lemma]
f(x)f(y).

Thus, f is a homomorphism.
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To show f is an isomorphism, let us define g" Ra x aR R.

such that g(xa.ay) xy.

Then

and

2 2
(gof}(x} g(f(x)) g(xa,ax) xa x x x,

(fog)(xa,ay} f[g(xa,ay}] f(xy} (xya,axy} {xa,ay).

This shows that f" is an isomorphism.

The proof for the converse is left to the reader.

THEOREM 2. Let R be an anti-commutative semiring. Then for an

arbitrary xER. x + x x.

PROOF" As in the proof of Theorem 1, we have

x g(xa,ax).

Thus,

x + x g(xa + xa. ax + ax)
g(x2a + x2a, ax

2 + ax2)
(x(x + x)a. a(x + x)x)

(xa. ax)
X.
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