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ABSTRACT. This paper develops an operational calculus for the continuous Legendre transform
introduced and studied by Butzer, Stens and Wehrens [1]. It is an extension of the work done
by Churchill et al [2], (3] for the discrete case. In particular, a differentiation theorem and a

convolution theorem are proved and the results are applied to the solution of some boundary

value problems.
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1. INTRODUCTION. For a given function f belonging to an appropriate function space, the

continuous Legendre transform is defined by

(TN =3 [ PA)f(a)dz M

where P)(z) is the Legendre function and A > —1. This transform has been introduced and

studied by Butzer, Stens and Wehrens [1]. The discrete analog of the transform in (1) has been
studied by Churchill [2] and Churchill and Dolph [3]. The object of this paper is to develop
an operational calculus for the transform which is useful in solving partial differential equations

whose underlying differential form is given by
d 2 d

In section 2 we present the background material needed in the sequel. In section 3, we derive
the operational calculus for (1) including a convolution theorem and a table of transforms of some

functions. In the last section we apply the results to solving some boundary value problems.
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2. PRELIMINARIES. We recall basic properties of the transform (T f)()) (see [1]) and important
contiguous relations that hold for the Legendre function.

The Legendre function Py(z) is given by

Py(z) = 2Fi(=A, A+1;1;1;$)=§’°:(—A)k(A+1)k 1-2

Ly Cg )L

Since Py_1(z) = P_)(x), it sufficies to consider the case A > —1. P)(z) satisfies the differential
equation

Dy+XA+1)y=0

where D is as given in (2). Further, it satisfies the relations Py(1) = 1, P{(1) = A(,\;q’ liny s (14
z)Py(z) = 0 and lim,_,_;+(1 4 z)P}(z) = 8oz,

n

The following contiguous relations (see [4]) will be useful in the derivation of the calculus for
(TH):
(2ZA + 1)z Pa(z) = (A + 1) Prya(2) + AProa(2) (3)
and
(1 = 2?)Pi(z) = —AzP\(z) + APx_y(z). (4)
From (3) and (4) we obtain the relation

A(A+1)

(1= )P = -5

(Prsar(z) = Paoy(2)). (5)

The addition formula for the Legendre functions (see [4]) is given by

m=1

where P]*(-) is the associated Legendre function and cosv = cosa cosf} + sinasin fcosy with

P}*(cos a) Py*(cos B) cos my (6)

0<a, f<m a+P <, yreal. Formula (6) will be useful in deriving the convolution theorem.
Another useful relation involving the Legendre functions is

sinT\ — sinwy

/_IP,\(z)P.,(—z)dz = GG Ty A AL )

The Legendre transform (T'f)()) is a linear integral transform from L,(—1,1] into the space
Co(—1,1} N Ly(—1,1). For feLy(—1,1], it was shown in [1] that (Tf)(A) = 0(A~%) as A — oo and
(TF)(A = 1)eCo(—1,1] N Ly(—1,1]. Further, it was shown that if feL,(—1,1] N C(-1,1] and if
VNT (A - 1)eLy(R*), then the inversion formula is given by

f@) = TH(@HO) =4 [T(THO - %)PA_%(~I)/\sin rAdA. ()

3. BASIC OPERATIONAL PROPERTIES FOR (Tf)(\). In this section we shall ' -

operational calculus for the continuous Legendre transform (T f)(\) thus extcuding the - lenju
obtained by Churchill [2] and Churchill and Dolph [3] for the discrete case. We shall al< derive
the Legendre transform of some functions.

r +

The first property in this direction involves the Lege.d.  tranforun of the cdfviontind 0 tos

D as given in (2).



CONTINUOUS LEGENDRE TRANSFORMS 357

Theorem 3.1. Let f be a function such that (i) f®eC(-1,1] n Ly(-1,1] k = 0,1
(i) limzsy(1 — 2?) f(z) = limy—41(1 — 2?) f'(z) = 0 and (iii) (Tf)()) exists. Then

(T(DHA) = =AA +1)(TF)(A). ®
Proof. From (1) together with successive integration by parts, we obtain

(T(DHAN)

% /_11 P\(z)Df(z)dz

3 [P - z’)%f(w)] dz

3@ - =7 - 2@ -]
55 z (G @)@,
%,\(x\ + 1)/_’l Py(z)f(z)ds.

The result follows from the facts that Py(1) = 1, P{(1) = M@, lim,,_1+(1 + z)Py(z) = 0 and
lim,,_;+(1 4 z)P{(z) = #2%2 together with the hypothesis (ii).

This basic operational property reduces a given differential equation which involves the oper-
ator D into an algebraic one or into a differential equation with one less independent variable.
Remark 3.1. (a) I, in Theorem 3.1, D*f = D*~(Df) and f®* satisfy the same hypotheses,
then
T(D*f())(X) = (~IF XA + DXTHR), k=1,2,... .
(b) We note that (9) can be cast into the form

FTHO) = TDHN) = A+ ATHN. (10)

The second operational property involves the relationship between the transform of a given
function f and the function g(z) = fZ, f(t)dt.
Theorem 3.2. If f is a piecewise continuous function defined on (—1,1) and g(z) = [Z, f(t)dt
and if (T'f)()) exists, then
_@HO+1) - (TH-1)

(Tg)(A) = A1 (11)
Proof. Since D(Py(z)) = —A(A + 1)Py(z), it follows that
(Tg)(») = _Z—A(T1+_1)/_‘1 d_‘i_ [(1 — a:’);i%P,\(z)J 9(z)dz
1 2\ p! 1 1 ! 2\ p/
= ~mnan - EE@E + m/_l(l — 2D P(2)f(z)dx .

Since P;(1) and g(1) are defined, g(—1) = 0 and lim,_, _;+(1 + z)P{(z) = BT the first t ;0 i

n

identically zero. Thus
(TN = i [ (1 = 2)Pi(@)f o)
IV =30+ L0 e

The contiguous relation (5) will then imply that

1 Lo AA+1)
T = — Py Y= P fliryly
(T9)(Y) 2AM(A+1) /_1 2 A+ 1 (Prrs () flrda




358 E.Y. DEEBA AND E.L. KOH

Equivalently,

o = -TZAAHD-TNA-1)

Remark 3.2. Similar difference relations to that of (11) can be obtained in the following
situation.

(a) If g(z) = zf(x) and if (T f)(\) exists, then under appropriate conditions on f, one obtains

QA+ INTHA+1) + MTH(A-1)
20 +1

(Tg)(A) = (12)

This will follow by applying the contiguous relation (3).

(b) If g(z) = fZ,(z — t)f(t)dt and if (T f)()) exists, then, again under appropriate conditions
on f, the contiguous relation (5) and Theorem 3.2 yields
(THA+2) - 2ATf)A) + (TN - 2) (13)

(2h +1)?

The next operational property that we will derive involves the inverse of the differential op-
erator D. We define the inverse of D, denoted by D~!, by D~!(f(z)) = g(z) if and only if
D(g(z)) = f(z). If (Tf)()) is known, then we want to relate T((D~1f))(}) to the transform of

f.

(T9)(A) =

If, for a given function f(z), D(g(z)) = f(z), then on integrating twice, we obtain
z ] t
9(z) = /o —= /_ fla)dadt +c

for some constant c. If f(z) is in addition an even function on (—1,1), then one can show by
employing a continuity argument that lim,_,4;(1—z%)g(z) = lim,;_4,(1—2%)¢'(z) =0. Theorem

3.1 will then imply that
(T£)(A) = T((Dg))(A) = —M(A + 1)(Tg)(A).

Equivalently,

(TN = =5 TN = -

Thus
T ) = -5 TN

This last relation implies that D! f is the inverse Legendre transform of —%. We thus
have
Theorem 3.3. If f(z) is such that f(z) is even on (—1,1), feL(—1,1]N C(-1,1}, (Tf)(A)

: T\
exists and X(A+x)€L‘(R+)’ then

Doi(sten = 77 (-T2 (14)

where the inverse transform T-! is given by (8).
We shall finally develop a convolution property for the Legendre transform. In particular, we

will show
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Theorem 3.4. If f(z) and g(z) are given functions for which (T f)()\) and (T'g)()) respectively
exist, then their product (T f)(A)(Tg)()) is the transform of the function h(z) = f(z)*g(z) where
h(z) is given by

h(cosv) = 2—11; [: /0’r f(cos a)g(cos B) sin adadf

where cos# = cosacosv + sinasinvcosd with 0 < a, v < 7, a+ v < 7 and 6 is real. The
variables a, v and § may be interpreted as the sides of a splerical triangle on the unit hemisphere
and 6 is the angle between the sides a and v (see Figure 1).

Proof. From (1), we have
1 1
THNTIN) = 5 [ Pr@)f()dz [ Pi(waw)dy.
Set £ = cosa and y = cos 8. Then

(THONT)A) = i /o " f(cosa)sina /0 " P\(cos a) Py(cos B)g(cos B) sin fdfda.

The addition formula for the Legendre function (6) will yield upon an integration with respect

to 4 from 0 to «
1 r
Py(cosa)Px(cos B) = ;[) Py(cosv)dy

where cos v = cos a cos 8 + sin asin f cos y (see figure 1).

Figure 1

Thus
1 n . LA A
(THANTg(N) = G/; f(cosa) sma/(; /0 Py(cos v)g(cos §) sin fdyddde.

In the spherical triangle PQR, we have

cos 3 = cosa cosv + sin asin v cos §.

Using this relation along with the sine law and transformation of co-ordinates, the double integral

can be written as:
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/0 /0 Py(cos v)g(cos B) sin vdfdv.

Hence,

(TN Tg)(A) = % [ Pa(eosvysins [-21; [ [ (o ag(cos ) sinadadG] dv.

The expression in the bracket is a function of v and we then write

h(cosv) = 2% /‘: /: f(cos a)g(cos B) sin adadf (15)

This may be interpreted as a convolution product of f and g and (Th(cos v))(A) = (T f)(A)(Tg)(A).
This proves Theorem 3.4.

Geometrically, the expression (15) is the mean value of f(cosa)g(cos ) over the unit hemni-
sphere z2+4y?+422 = 1, z > 0. To see this, we note that the element surface area is dS = sinadads.

This is clear if we identify the coordinate transformation in Figure 1 by

T = cosa
y = sinwsinf
z = sinacosé

Thus (15) reads
h(cosv) = ;;L/f(cosa)g(cosﬂ)ds.

We will now evaluate the Legendre transform of some functions.

1. f(z) = constant = k

@y = FBeR A2
k A=0

2. f(z) = P,(z). Then by (2.5) we have, forn =0,1,2,...,

@ = 1 [ B@reE =S [ BEPR-E
_ sinw(A —n) —(n
= 20O Fnrn AT T(0FD)
3. f(z) =log(1 — z).
THO) = 3 [ Pu(e)log(1 ~ 2)de

- “2T(,\1Tﬁ / '1 Ed; [(1 - zz)a%m(x)] log(1 — z)dz

_ sinmwA 1 1 1 d 2 d .
= (logz),\(,\+1)_,\(/\+1)—2,\(,\+1)/.1P"(x)d:c [(1“’ )z los(1 — =) du-

Observe that D(log(1 — z)) = £ [(1 —z2) L log(1 - .7:)] = —1. Thus

sinwA 1 sinTA

(Tf)(’\)=(log2)/\(/\+l) - AA+1) - A2(A41)2

4. f(X) = JZ, {&;dt. By using 1 and 3 above, we obtain
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1 sinwA
THN =557 " Yo

5 f(z)=(1—-2tz+2?)t=%=, t"P,(r), =1 <t < 1. From (2) above

sinr A & t
THN) = —5- ’g(,\_n)(,\+n+1) ’

We finally remark that for A equal to a non- negative integer, the results of this section yield
those obtained in (2] and [3].
4. APPLICATIONS. In this section we consider some applications of the Legendre transform.
We consider problems arising in heat conduction and in potential theory.

A. Heat Conduction Problem. Consider a non-homogeneous bar with extremities at ¢ = +1
and is insulated at these end points. Let u(z,t) be the temperature of the bar at position = at

time ¢t. The one dimensional heat equation with prescribed initial temperature is given by
a3 a Au
— = = (.t
9z (kaz “(“”")) pe g ()
u(z,0) = g¢g(z), -1<z<1
where k, p and c are physical constants representing thermal conductivity, density and specific

heat respectively. We assume that the thermal conductivity k is given by k = a(1 — z?), « being

a real constant. The above equation reads

a a pcOu
72 ((1 - zz)gu(z,t)) = —5®
u(z,0) = g¢g(z), -l<z<1.

If U\ t) = T(u(z,t))(A) and G(X) = (Tu(z,0))(A), then, by Theorem 3.1, we obtain upon the
application of the transform
d a
ﬁU(z\,t) = —;é/\(/\ + 1)U\ t)
U(A,0) G(A).

The solution is given by
U\ t) = G(A)e™ =+

Now u(z,t) can be obtained by either employing the inversion formula (8) or the convolution
theorem. By employing the inversion formula and under the assumption that u(z,t)eC(-1,1] N
Ly(~1,1) and VA U(X — 1, t)eL;(R*), one obtains

u(z,t) = 4/°° G\ — %)e"}c(’\z_})‘P,\(—z)/\ sinmAdA
o
On the other hand the convolution property (Theorem 3.4) will yield

u(cosv, t) = 2—1; /0’r /: g(cos a) f(cos B) sin adadf

where a, (, 8 are as in Figure 1 and cos = cosacosv + sinasinvcosd and f is the inverse

transform of e =<'~ That is, by (8)

f(z) = e¥et4 [T e RO Py~ a)AsinmAdA.
0
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B. Dirichlet Problem for the Unit Sphere (see[2]) Consider the problem of determining the

potential v(r,cos8) in the interior of a unit sphere with a prescribed potential f(cosé) on r =
1, 0 £ 6 < n. The Laplace equation defining this potential is

1 1
2 .
V= ;(rv)" t g sina(sm 0vg)g = 0.

If z = cos 6, then the equation reduces to

0

r(rv).. + ((1 - x’)v,)z
v(l,z) = f(.‘l’), -1<z<1.

If V(r,)) and F()) denote respectively the Legendre transform of v(r,z) and f(z), then, upon
applying the transform to the underlying equation, we obtain
dz
ra—r—z(rV(r, A)) = AA+1)V(r, )
V(1,))

Il
o

F()).

The solution of this equation is given by
V(r,A) = e + cpr~ O+,

In order to apply the inversion formula (8) we need to have v(r,z)eLs(—1,1) N C(-1,1] and
VA V(r,\)eLy(R*). This will imply that ¢, = 0 and v(1,A) = F(\) will imply that ¢; = F(}).
Hence the solution is given by
v(r,A) = F()r*
and
had 1 =1 .
v(r,z) = r/o F(\ - E)r i Py(—z)AsinwAdA.
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