A CONSTRUCTION OF A BASE FOR THE M FOLD TENSOR PRODUCT **OF A BRANCH SPACE**

ROHAN HEMASINHA The University of West Florida Pensacola, Florida 32514

(Received August 3, 1987)

ABSTRACT. Let E be a Banach space with Schauder base $(x_n)_n$. Let $\stackrel{m}{\bullet}_{\alpha}$ E denote the completion of the m fold tensor product with respect to a reasonable cross norm α . We show that the set $\{x_i \bullet \dots \bullet x_i : x_i \in (x_n)_n\}$ can be enumerated so that for each positive integer k, the first k^{m} terms are precisely all the elements of the form $x_1 \bullet \cdots \bullet x_i$ with $i_1, \dots, i_m \in \{1, \dots, k\}$ and the set so arranged is a Schauder base for $\bullet_{\alpha} E$.

KEYWORDS AND PHRASES. m fold tensor product, projective, injective and reasonable cross norms, Schauder bases. 1980 AMS SUBJECT CLASSIFICATION CODE. 46B15, 46M05.

1. INTRODUCTION.

and by $\overset{\mathbf{m}}{\bullet}_{\alpha} \mathbf{E}$ its completion with respect to reasonable norm α . If $(\mathbf{x})_{n}$ is a Schauder base for E then $\overset{m}{\bullet}(x_{_{-}})$ will denote the set

$$\{x_{i_1} \bullet \dots \bullet x_{i_m} : x_{i_k} \varepsilon (x_n), 1 \le j \le m\}.$$

For m > 2 the projective (injective) tensor norm on $\stackrel{m}{\bullet}E$ will be denoted by $\gamma_{m}(\lambda_{m})$. If m = 2 this norm will be denoted by $\gamma(\lambda)$.

In [1], [4] it is shown that if E_1, E_2 are Banach spaces with Schauder bases $(x_n)_n$, $(y_n)_n$ then for any reasonable norm α , the space $E_1 \bullet_{\alpha} E_2$ has a Schauder base $(z_)$ with the following properties.

(1) $(z_n)_n$ is obtained by enumerating the set $(x_n)_n \bullet (y_n)_n$; (2) the enumeration is such that for any positive integer k, the first k^2 terms are precisely all elements of the form

$$\mathbf{x}_{\mathbf{i}_1} \bullet \mathbf{y}_{\mathbf{i}_2}, \quad \mathbf{i}_1, \mathbf{i}_2 \in \{1, \dots, k\}.$$

In this paper we show that for any positive integer m, the space $\bullet_{\mathbf{C}}^{\mathbf{m}}$ has a Schauder base obtained by enumerating $\overset{\mathbf{m}}{\bullet}(\mathbf{x}_{n})_{n}$ in such a way that for any positive integer k, the first k^m terms are precisely all elements of the form

$$x_i \bullet \dots \bullet x_i$$
 with $i_1, \dots, i_m \in \{1, \dots, k\}$.

Our proof is via an induction argument and in a forthcoming paper we utilize this construction to derive some properties of the symmetric tensor algebra of a Banach space. Note that even for the case m = 3, iteration to $(E \bullet_{\gamma} E) \bullet_{\gamma} E$ of the enumerating scheme described in [1] will not yield a base with the above mentioned properties.

For definitions and terminology regarding Schauder bases, tensor products and tesnor norms we refer the reader to [4], [3], and [2].

We denote the following property (*) of the projective tensor norm. For m > 2 let u be an element of $\stackrel{m}{\bullet E}$. It can easily be shown that

(*)
$$\gamma(u) = \gamma_{m}(u)$$

where $\Upsilon(u)$ is the projective norm of u when u is considered as an element of $F \bullet E$ with $F = \stackrel{m-1}{\bullet} E$ being endowed with the norm Υ_{m-1} . We shall make use of this fact subsequently.

We now state our theorem.

THEOREM. Let (x_n, f_n) , $x_n \in E$, $f_n \in E'$ be biorthogonal system such that $(x_n)_n$ is a Schauder base for E. Let α be a reasonable norm on $\overset{m}{\bullet}E$. Then there exists for $\overset{m}{\bullet}_{\alpha}E$ a biorthogonal system (z_n, g_n) with the following properties.

- (1) As sets [z_n: n ε N] = ^m(x_n)_n [g_n: n ε N] = ^m(f_n)_n.
 (2) The enumeration of (z_n,g_n) is such that for each positive integer k the first k^m terms are precisely all the tensors of the form ^xi₁ • · · · • x_{i_m}, f_{i1} • · · · • f_i with i₁, . · . , i_m ε{1, . · . , k}.
- (3) The sequence $(z_n)_n$ is a Schauder base for $\overset{m}{\bullet}_{\alpha} E$.

PROOF. It is known that [2] $\lambda_{m} \leq \alpha \leq \gamma_{m}$ for any reasonable norm α . Also $\stackrel{m}{\bullet}E' \subseteq (\stackrel{m}{\bullet}_{\lambda_{m}}E)'$. Thus any enumeration of $\stackrel{m}{\bullet}(x_{n})_{n}$ together with the corresponding enumeration of $\stackrel{\bullet}{\bullet}(f_{n})_{n}$ yields a biorthogonal system for $\stackrel{m}{\bullet}_{\alpha}E$. It is easily shown that the linear span of $\stackrel{\bullet}{\bullet}(x_{n})_{n}$ is dense in $\stackrel{m}{\bullet}_{\gamma}E$ and we shall first establish the assertions of the theorem for $\alpha = \gamma_{m}$.

Now for m = 2 the base constructed in [1] has the stated properties.

Suppose that a biorthogonal system (z,g_n) with the stated properties can be constructed for \bullet_{γ_m} E.

m+1Consider the sequence $(w_n)_n$ in \bullet E defined by the scheme in the accompanying figure. For each positive integer k, the terms

$$w_k^{m+1}_{+1}$$
, $w_k^{m+1}_{+2}$, ..., $w_{(k+1)}^{m+1}_{+1}$

are described by the tensor beneath each term.

Figure l

k, a positive integer; l an integer $0 \le l \le k$

$$w_{k}^{m+1}+1$$
, $w_{k}^{m+1}+2$, $w_{(k+1)}^{m}+k^{m}(k-1)$
 $x_{1} \bullet z_{k}^{m}+1$, $x_{1} \bullet z_{k}^{m}+2$, $x_{1} \bullet z_{(k+1)}^{m}$

 $(k+1)^{m}+k^{m}(k-1)+1,$ $(k+1)^{m}+k^{m}(k-1)+2,$ $(k+1)^{m}+k^{m}(k-2)$ $x_2 \bullet z_k^{m} + 1$ $x_2 \circ z_k^m + 2$ $x_2 \bullet z_{(k+1)}^m$ $w(l+1)(k+1)^{m}+k^{m}(k-(l+1))$ $x_{\ell}^{+1} \bullet z_{k}^{m}_{+1}$ • • • • • • • • • • • • • • • • • $x_{\ell+1} \bullet z_{(k+1)}^m$ ••••• $w^{(k-1)(k+1)} + k^{m} + 1$, $w_{k(k+1)}^{m}$ x_k • z_km₊₁ ••••• $x_k \circ z_{(k+1)}^m$ $w_{k(k+1)}^{m}+2$, $w_{(k+1)}^{m+1}$ $w_{k(k+1)}^{m}+1$,

 $x_{k+1} \bullet z_1$ $x_{k+1} \bullet z_2$ $x_{k+1} \bullet z_{(k+1)}^m$

In the preceding tableau each of the first k rows contains $(k+1)^m - k^m$ entries. The last row has $(k+1)^m$ entries, and so altogether we have exhibited $k((k+1)^m - k^m) + (k+1)^m = (k+1)^{m+1} - k^{m+1}$ entries.

The sequence (h_n) is obtained by enumerating the set $\{g_p \circ f_q | g_p \in (g_n), f_p \in (f_n)\}$ according to the same scheme.

In view of the inductive hypothesis the system (w_h, h_n) is a biorthogonal system with the property that the first k^{m+1} terms are all of the form

$$x_{i_1} \bullet \cdots \bullet x_{i_{m+1}}, f_{i_1} \bullet \cdots \bullet f_{i_{m+1}}$$

with $i_1, \dots, i_{m+1} \in \{1, \dots, k\}$.

Let S_n , T_n , W_n respectively denote the n^{th} partial sum operators of the systems (x_n, f_n) , (z_n, g_n) and (w_n, h_n) .

Since (x_n) , (z_n) are bases the sequences (f_n) , (T_n) are bounded in operator norm by some constant M. To show that (w_n) is a base it thus suffices to show that for some positive M', $\|W_n\| \leq M'$ for all n([4], p. 25).

Now, given a positive integer n the defining scheme for (w_j) (see fig. 1) shows that W_n can be expressed as sums of tensor products of the operators S_m , T_m and f_m .

Indeed, let us consider the three possible cases.

Case 1. If $n = k^{m+1}$ for some positive integer k then

$$W_n = {}^{m+1}_k$$
, the m+1 fold tensor product of S_k .

Case 2. If $n = \ell (k+1)^m + k^m(k-\ell) + r$, with $0 \le \ell \le k$ and

$$1 \leq r \leq (k+1)^m - k^m$$
 then

$$W_n = {}^{m+1}S_k + (T_{(k+1)}m - T_km) \bullet S_k + (T_k^m - T_k^m) \bullet f_{k+1} \bullet$$

Case 3. If $n = k(k+1)^m + r$ with $1 \le r \le (k+1)^m$ then

$$W_{n} = \overset{m+1}{\bullet} S_{k} + (T_{(k+1)}m - T_{k}m) \bullet S_{k} + T_{r} \bullet f_{k+1}$$

In u is in m_{\bullet}^{+1} E then property (*) together with the fact that γ_{m+1} is reasonable yields the following inequalities

(i)
$$\gamma_{m+1} (\overset{m+1}{\bullet} S_{k}(u)) \leq \|S_{k}\|^{m+1} \gamma_{m+1}(u)$$

(2) $\gamma_{m+1} ((T_{(k+1)})^{m} - T_{k})^{m} = S_{k}(u)) \leq \|T_{(k+1)}^{m} - T_{k}^{m}\| \|S_{k}\| \gamma_{m+1}(u)$
(3) $\gamma_{m+1} ((T_{k})^{m} + r - T_{k})^{m} = f_{k+1}(u)) \leq \|T_{k}^{m} + r - T_{k}^{m}\| \|f_{k+1}\| \gamma_{m+1}(u).$

We utilized (*) in deriving (2) and (3). Hence,

$$\gamma_{m+1}(W_n(u)) \le (M^{m+1} + 2M^2 + 2M^2)\gamma_{m+1}(u)$$

in all three cases. It now follows from the uniform boundedness principle that ($\|\,W_n^{-}\,\|$) is bounded.

To complete the proof let us recall that if α is a reasonable norm then $\lambda_m \leq \alpha \leq \gamma_m$. Furthermore, $\overset{\mathsf{m}}{\bullet}_{\alpha} E$ is the completion of $\overset{\mathsf{m}}{\bullet}_{E}$ with respect to α . Consequently for all such α , the system (z_n, g_n) is a complete biorthogonal system whose sequence of partial sums T_n is pointwise bounded and hence bounded in operator norm. This means that $(z_n)_n$ is a Schauder base for $\overset{\mathsf{m}}{\bullet}_{\alpha} E$.

CONCLUDING REMARKS.

It would be interesting to find out whether the base for $\frac{m}{\gamma_m}$ E obtained by iteration of the process in [1] is equivalent to the base described in this paper. We bope to investigate this problem in a future paper.

REFERENCES

- GELBAUM, B.R. and GIL DE LA MADRID, J. Bases for Tensor Products of Banach Spaces, Pacific J. Math. 11 (1961), pp. 1281-1286.
- CIGLER, J., LOSERT, V. and MICHOR, P. Banach Modules and Functors on Categories of Banach Spaces. Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., (1979).
- SCHATTEN, R. A Theory of Cross Spaces. Annals of Mathematics Studies, <u>26</u>, Princeton University Press, (1950).
- SINGER, I. Bases for Banach Spaces, Vol. 1. A Series of Comprehensive Studies in Mathematics, 154. Springer-Verlag, (1970).