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ABSTRACT. A connected graph with n vertices contains no more than -z(n-2) cut-

vertices of degree r. All graphs in which the bound is achieved are described. In

addition, for graphs of maximum degree three and minimum 6, best possible bounds are

obtained for I, 2, 3.
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I. INTRODUCTION.

It is well known that a connected graph with n vertices, n 2, has at least 2

non-cut-vertices, and hence, at most n-2 cut vertices. The only graphs with n-2

cut-vertices are paths, and, in these, every cut-vertex has degree 2. The purpose of

this article is to show that the above is a special case of a more.general result,

namely that in any graph the number of cut-vertices of degree r is less than or equal

r
to (n-2). We prove the case r 3 of this result, the case rm2 being known, as

mentioned above. In addition, we demonstrate all graphs in which the upper bound is

achieved. Similar questions were considered in [I] and [2], where the principal

results involve regular graphs. We begin with some definitions.

Let M be a vertex set in the connected graph G. An M-block is a set B of vertices

maximal with respect to the following property: if x,y E B, there exists no vertex

v in M distinct from x and y such that the removal of v from G leaves x and y in"

different components. A cut vertex which lles in M is called an M-cut-vertex. In

strict analogy with the standard block-cutpoint-tree construction [3], we define the

M-block-cutpoint-tree of a connected graph G to be the graph TM(G) whose vertices are

the M-blocks and M-cut-vertices of G, with an M-cut-vertex v adjacent to an M-block

B if and only if v g B. It is easy to show that TM(G) is a tree. In case M is the

set of all vertices of degree r in G, we refer to r-cut-vertices. The number of

r-cut-vertices in the graph G will be denoted c (G) or simply c In case M is the
r r
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set of all vertices of G, our notions coincide with the usual notions of block, cut-

vertex, and block-cutpoint tree. If G is a graph, we will denote by S(G___) the graph

formed by joining to each vertex of G a new vertex of degree one, or end vertex.

As usual, the complete graph with n vertices will be denoted K An r-tree is a tree
n

in which every vertex has degree r or degree I.

Our proof that c r (n-2) will be by induction on n. We begin with the
r 2r-2

following simple observation.

LEMMA I. Let G be a graph with n vertices. Suppose that Cr(G) > r (n-2)

and that n is the smallest number of vertices for which this is the case. Then no

vertex of G is adjacent to two or more end vertices.

PROOF. Removal of two end vertices adjacent to a single vertex would decrease

c by at most one. In the subgraph H which remains, we would have
r

c-I ccr (H) r >
-2)-2 n---- n-2

contradicting the minimality of n.

LEMMA 2. Let r be an integer, r 3. Let G be a connected graph with n
c (G)

vertices, n 2r. If
r r Krn-2 2r-2

then n=2r and G S( ), which implies that

r r
n-2 2r-2

PROOF. Suppose G is a smallest graph in which the inequality holds. Since it

holds in S(Kr), we know n 2r. Let v be an r-cut-vertex in G. Then no more than

one component of G v may contain vertices of degree r (degree taken in G), or else

G would have at least 2r+l vertices. Suppose that component C of G v contains

all vertices of degree r in G v. Then the remainder of G v consists of a single

vertex. For, if there are two or more vertices in G v C, then we remove them

and argue as in Lemma I. We now know that each r-cut-vertex in G is adjacent to an

end vertex. Hence, G consists of c r-cut-vertices, c end vertices adjacent to
r r

these, and, let us say, j other vertices. So n 2c +j and our hypothesis says
r

r r
This implies that 2c + r(j-2) O, which forces j 0 or j I.

2c +j-2 2r-2 r
r

If j I, we have r 2c and n 2c + I, so n r + I. But any r-cut-vertex,
r r

along with its neighbors, accounts for r + vertices, so n r + I, and any vertex

of degree r is adjacent, to every vertex in G. Thus c I, r 2, and we may rule
r

out this case since we have assumed r 3.

The remaining case is j O. Here we have r c (from 2c + r(j-2) 0),
r r

+ j n. Since n 2r, we have n 2r and G S(Kr)-so 2r 2c
r

2. MAIN RESULTS.

THEOREM I. Let r 3 be an integer. Let G be a connected graph with n vertices.

Then Cr(G)
r

-(n-2). In case equality occurs, G is the graph formed from some

r-tree by replacing each vertex of degree r by K
r

PROOF. We argue by induction on n. Lemma 2 settles the case n 2r, since

S(Kr) is formed from an r-star by the construction mentioned. Suppose now that

n 2r and that the statement holds for graphs with fewer vertices. If every r-cut-

vertex in G is adjacent to an end vertex, then certainly c
r n and it follows that
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c
r r< Now suppose that there are r-cut-vertices adjacent to no end vertex.n-2 2r-2

Let M be the set of all such, and let B be an end block in the M-block-cutpoint tree

of G. Let v be the unique M-cut-vertex in B. Let H be the subgraph of G induced

by v and the vertices not in B. By induction c (H) r
r

(h-2) where h is the number

of vertices in H. Let j be the number of r-cut-vertices other than v in B. Note

that each of these vertices is adjacent to exactly one end vertex, by Lemma I. Let

be the number of vertices in B other than the r-cut-vertices and the end vertices.

c (G) Cr(H) + + j Cr(H) + +
Then IBI 2j + + I. Now, we have

r
n-2 n-2 h + BI -I -2

c (H) + + j
r

r 2r-2
(h-2) + + j

Simple arithmetic shows this ratio is lessh + 2j + 2 h + 2j + 2

rthan or equal to if and only if 2(j+l) + (4-2) r 0. This is clear if 2.

If I, we must show that r 2j + 2. Let u be the vertex in B which is neither

an end vertex nor an r-cut-vertex. If j # O, let w be one of the r-cut-vertlces

adjacent to an end vertex. Then w has exactly r neighbors. These are included

among u, v, the end vertex adjacent to w, and the j-I remaining r-cut-vertices

in B. Hence, r j + 2 < 2j + 2 and we have strict inequality in this case. If

j=0, then B consists only of v and u,which contradicts the fact that v is adjacent to

no end vertex. Now suppose O. We must show r j + I. The case j 0 is not

possible, since this would leave B with a single vertex. So, let w be one of the j

r-cut-vertices adjacent to an end vertex. The possible neighbors of w are its end

vertex neighbor, v, and the remaining j r-cut-vertices. Hence, r j + I.

Now, if equality
r r

n-2 2r-2
holds in G, we must be in the case O, and we

must have c (H) r
r (h-2), and r j + I. By induction, H is a graph formed by

replacing each r-vertex in some r-tree by K Since r j + I, the block B consistsr
of v, r-I mutually adjacent r-cut-vertices, and end vertices adjacent to each of

these r-l. Hence, since v has degree r, it has only one neighbor outside B, and B

is precisely a copy of S(Kr) attached to H by a single edge. Hence, G is of the

desired structure.
rThe bound (n-2) is achieved only in graphs with many vertices of degree one.

It would be interesting to know what upper bound might be achieved in graphs with

larger minimum degree. We are able to answer this question rather easily for graphs

of maximum degree three, using the fact that in such graphs every cut vertex is

incident with a bridge.

THEOREM 2. Let G be a graph with maximum degree 3. Then:
2(i) If G has no vertices of degree less than 2, then c3(G) (n-3);

(ii) If G is three-regular, then c3(G (n-6).

PROOF. i) The proof is by induction on n. We may assume that no bridge is

incident with a vertex of degree two, for, otherwise, eliminating (smoothing out)

such a vertex would result in a graph with fewer vertices in which c
3

remains
2unchanged. Now, if G has no bridge, then c

3
0 (n-3). If G has bridges, then

remove a bridge joining vertices v and v2, both of degree 3. The two components
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G
1
and G2

with n and n2
vertices respectively, have minimun degree: two, and by

induction, G and G2
have at most 3 (nl-3) and 3 (nz-3) cut vertices of degree three.

2
-3) + 2 3)

2
Adding 2 to include v and v2, we have c3(G) 2 + (n (n2- (n-3).

(ii) Again we proceed by induction. It suffices to prove the statementS, for

cubic graphs in which no cut vertex is incident with three bridges, for, blowing up

all such vertices to triangles would result in a graph all of whose extra vertices

are cut vertices, and in which no cut vertex is incident with three bridges. Now,

when a bridge is removed, each component must have at least five vertices. If there

is a bridge each of whose components has more than five vertices, remove it, leaving

components H and H
2
with n and n

2
vertices. H

i
has a unique vertex v

i
of degree

two, i i, 2. Form now graphs G and G
2 by joining copies of K

4
with a subdivided

edge (which has also a unique vertex of degree two) to v and v2. Since n and n
2

are bigger than 5, it follows that the graphs G and G2, which have orders nl+5 and

n2+5 (that is n-n2+5 and n -nl+5) are smaller that G. By induction, G and G
2

have at most (n + 5 6) and (n
2 + 5 6) cut vertices. This counts two vertices

wich are not cut vertices of G. Hence c3(G) (nl-l) + (n2-1) 2 1/2(n-6). All

that remains is the case where the removal of any bridge leaves at least one

component of exactly five vertices. In this case, removal of all bridges leaves

several components of five vertices and at most one other component with, say K

vertices. If this component has r vertices of degree 2, then G has K + 5r vertices
c

and 2r cut vertices. So,
3 2r
n K+5r , so c n. But n < (n-6) for n 18.

If n < 18, then r 2. If r I, then c
3

2 and n I0. If r 2, then c
3

4, and

it is easy to show that n 14. Hence, the inequality holds in every case.

Part (ii) of Theorem 4 is a special case of a result of [2]. The bounds of

Theorem 4 are achieved in the following graphs. Let T be a tree in which every

vertex has degree one or three. Replace each vertex of T by a triangle. The bound

of (i) is achieved in this graph. To achieve the bound of (ii), replace each

vertex in T of degree three by a triangle and each vertex of degree one by a sub-

divided K4. These examples show that the results of Theorem 4 are best possible.
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