
Internat. J. Math. & Math. Sci.
VOL. 12 NO. 2 (1989) 209-233

209

PRODUCTS OF STOCHASTIC MATRICES AND APPLICATIONS

HARRY COHN

Department of Statistics
The University of Melbourne

Parkville, Victoria 3052
Aus t ral ia

(Received November 20, 1987)

ABSTRACT. This paper deals with aspects of the limit behaviour of products

of nonidentical finite or countable stochastic matrices (P). Applications
n

are given to nonhomogeneous Markov models as positive chains, some classes of

finite chains considered by Doeblin and weakly ergodic chains.
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1. INTRODUCTION.

Let P0,PI,..., be a sequence of finite or countable stochastic matrices,

p(n) the (i j) entry of P P p p(m,n) the (i,j) entry of P
lJ n m,n m n m,n

In the ’homogeneous’ case, when P P the classical Markov chains
0

theory provides a detailed analysis of pn: for ergodic chains pn converges as

n-,=o, whereas otherwise pnd+r converges as n-oo for some d > and

r l,...,d-1. It turns out that in the ’nonhomogeneous’ case, when (Pn) are

nonidentical lira infn_oP
(m’n) > 0 and

(m,n) > 0 imply that
i,j

{pm,n)i,j’’/p,j(m,n)} converges as n/oo in a case that may be thought of as aperiodic
(m,n) (n)whereas otherwise {Pi,j /P :n >. m} assume a finite numberoflimit points.

+/- Imn-ri, J
(m,n)

-a
(re:n) (m,n)(m,n)

Both ]P and the limit points of {ri, j /P,j :n m+l

(m) E(m) (k)/a m) (k) where (k) lim p(m,n)will be identified in terms of i u n-O
i

(k) u,j
n

for some sequence of sets {E(k)}. Our results may be understood without
n

reference to Markov chains, but the proofs will consider a Markov chain

{X :n >. m} with finite or countable state spaces assuming a strictly positive
n

initial probability vector (m) and the one-step transition probability

matrices (Pn) n >. m as the starting point. It will turn out that the structure

of the tail o-field of {X :n >. m} is crucial for the asymptotic behaviour of
(m) n

{P and that (k) p(m)(TklXm u) where T
k

is an atomic set of the tail
m,n u

o-field of {X :n >. m}. We first consider the countable case where a number of
n (m,n)

results are obtained under the assumption that lim infn_oPi, j
> 0.

A particular case is that of convergent {p(m,n)} where lim p(m,n) will be
l,J n lJ

identified. Then we look at the case of finite S where more powerful results

are obtained without any assumption on (P). Further we specialize our
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results to some classes of finite and countable nonhomogeneous chains and

explore some connections with the notion of weak ergodicity.

We do not include in this paper specific applications of products of

stochastic matrices which seem to be numerous, ranging from demography as shown

by Seneta [21], to recent developments in the theory of Markovian random

fields assuming phase transitions (see Kemeny et al [12] and Winkler [22]).

Our paper is a streamlined survey of the literature of nonhomogeneous

Markov models from the viewpoint of tail o-fields.

2. TAIL -FIELDS

Let (,,P) be a probability space and A a set in . We shall say that

A is a P-atom/c set of if P(A) > 0 and A does not contain any subset A’ with

A’g and 0 < P(A’) < P(A). A nonatomic set A in is said to be a

P-oompetey nonatomio set of C if P(A) > 0 and A does not contain any

P-atomic subsets of . It is easy to see that, in general, may be

represented as Un=OAn where A
0

is P-completely nonatomic and AI,A2
are P-atomic sets of C. This representation is unique modulo null probability

sets of . Of course, some of {A.}I may be absent If A
0

is present, we

shall say that is nonaoo whereas if A
0

is absent is called oio. If

A
0

is absent and there is only a finite number of atomic sets {A.} we shall say

that is finite. Finally, is said to be trivial if A .
Take now S x S x... where S is finite or countable, Xn() 00n for

0-- (I n and write n for the -field generated by {Xk:k > n}. A

strictly positive distribution (m) (m)
(i ;i g S) and a sequence of S x S

stochastic matrices (Pn)n > m
uniquely determine a probability measure p(m)

on m such that {Xn:n > m} is a nonhomogeneous Markov chain on (, m,P (m))
with p(m)(Xm=i) (m)i and p(m) (Xn+l=j IXn=i) Pi,j(n) for i,j g S and n > m.

This model will allow us to use probabilistic arguments on all p(m,n) since
l,J

the equality p(m,n) p(m)(Xn__JlXm__i makes sense in view of P(m)(Xm=i) > 0

The usual model {X :n > 0} may not always lead to p(O)
n (Xm=i) > 0 even if we

take (o) to be strictly positive.

We shall write {An i.o. for n=iUm=nAm and {An ult. for Un=lm__nAm" Here

’i.o.’ stands for ’infinitely often’ and ’ult.’ stands for ’ultimately’.

Further, limn_oAn A a.s. will mean that llmn_olA A
a.s. where stands

n
for the indicator function of a set. We shall say that A B a.s. if

A 1B_...(n)
a.s. The -field generated by Xm,...,Xnwillbe denoted by

A key tool for out study will be provided by the tail o-field of {X :n > m}

(m) n
defined as 0

n--m--n

PROPOSITION 2.1. Suppose that A is a set in m). Then there exists a

sequence {L of subsets of S such that limn_o{XnEL A a.s. with respect to

p(m)
n n

PROOF. Since A belongs to m’ the martingale convergence theorem implies
that limn_oP

(m) (AI .(n))= IAa.s. with respect to p(m). By the Markov property

of {Xn:n > m} we getmp (m) (A m(n)) p(m)(AIXn) Thus taking

L {i:P (m)(AIX =i) > %} with 0 < % < yields limn_o{X g L A p(m) a.s.n n n n
completing the proof.
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The argument used above goes back, essentially, to Blackwell [1].

3. POSITIVE STATES.

Consider the Markov chain {X :n >.m} with a strictly positive initial

(n)-p(x_=j) for n >.m. We shall say that jprobability vector (m) and write j
(n) > 0.is positive if lim infn_o j

PROPOSITION 3.1. A state j is positive if and only if for any subsequence

(nk) with limn_>oonk there exists a state i (possibly depending on (nk))
(m,nk)

such that lim suPk_oPi, j
> O.

PROOF. Since !n) (m)p(m,n) and (m) > 0 for i g S it suffices
3 ieS i i,j i

(nk) (m,nk)
to notice that limk_oj

0 if and only if limk_oPi, j
0 for all i g S.

Proposition 3.1 shows that the definition of positivity for j depends only

on {P (m,n) ;n > m, i E S}.

THEOREM 3.1. If j is positive then

d
{X =j i.o.} p(m)
n

U T
k

a.s.
k=l

where Tk, k=l d are P (m)
-atomic sets of f(m) with d < .

PROOF. Notice first that {X =j i.o.} e(m)
Assume by way of

n
contradiction that {X =j i.o.} does not equal a finite union of atomic sets

n
and therefore we may find some infinite sequence of disjoint sets

TI,T2 e(m)
with P(m)(Ti) > 0 for all i such that

{Xn=j i.o.} U T
k

P(m)a.s.
k=l

(3.1)

(n)Take 6 lim infn_ow. If (3.1) were true, there would exist a set T
k

with p(m)(Tk) < 6. Let {E (k) :n m} be some subsets of S such that
n

limn_{Xn eE(k) Tk p(m) a.s. as ensured by Proposition 3.1. In view
n

E (k)
of (3.1) j must belong to an infinity of sets

n
}" This entails

(n) (m) E
(k) (m)

lira inf ’3 > lim P
n

P (Tk) < 6
n-o n-o

(m)
which is absurd. Thus {Xn=j i.oo} consists of a finite number of P -atomic

sets of (m).
THEOREM 3.2. Suppose that j is positive. Then there exist d disjoint

sequencesof integers {Fk}where Fk {nk)
:t=l,2 and d sequences of

E (k) ,d {re+l, and for i,e Ssets
n

such that Um=IFk

n’-olim p(m,n’)i,j/pm:n’),] i(m)(k)/am)(k)
n eFk

_(m,n’)
provided that > 0 where (m)(k) lim E[(k p(m,n) for u S

u n-j e u,3
n

(3.2)
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PROOF. Let .tE.k.#n be some sequences of sets with limn_o{Xn eE’k’#n" Tk
(m)

P a.s. for k=l,2,...,d whose existence is ensured by Proposition 2.1.
d E (k) for n sufficiently large.We first show that j eUk= n

d (k)
Indeed, if we assume the contrary, i.e. that j Uk=iEnt for a sequence {nk}
with lim n oo, the positivity of j leads to p(m)(X =j i.o.) > 0 and

t t n
t

U
d E (k) p (m)

contradicts {Xn gk=IdE(k)n i o {Xn k=l n
ult.} U =iTk a.s.

Thus, we may assume, if necessary by modifying a finite number of sets {E (k) },
n

U
d

E (k) for n m+lthat j g
k= n

(m,n) (m,n) (m,n)
Define now the random variable /P pm,n,/p

ri,Xn ,Xn to equal
z,u ,u for

p(m,n)c0g{X =u} if > 0 and 0 otherwise. Since
n ,u

(m)

p(m,n)/p(m,n)
p(m) (Xm=ilXn=U) (3.3)

(m)i,u ,u p(n) (Xm=Z Xn=U) i

the Markov property of the reversed chain yields

lim p(m,n) _(m,n) P(m)(Xm=im(n)) __(m)
i,X

n
/,X p(m) (Xm=m(n)) (m)n n z

(3.4)

Using the martingale convergence theorem and Theorem 2.1 in (3.4) leads to

(m) p(m)
(m,n)/p(m,n)

p(m) (Xm=ilTk) (TklXm=i)
lim Pi,Xn "-,X (m) (m) p(m) (Tel X =)n-o n P (Xm= Tk) wi m

(3.5)

for almost all gTk, k=l 2, provided that P(m)(Xm=1Tk)’ > 0. Notice

that e(m) (TklXm=U) limn_oe(m) (X
n
g E(k)iXm=U) limn_ ! (k)e(m:n) (m) (k).

n
j E u,3 u

n
(k)

:t=l,2 be the set of values of n with j e E
(k) We showLet -nt n

n
(k)

now that (3.5) holds if n runs through
t

:t=l,...} and Xn is replaced by

(k)
j Indeed, suppose the contrary. Then there exists {nt}-lt

with

lim n such that
t+oo t

(m,n) (m’nt) p (m) (Tkl Xm=i
t-lim Pi,j /P,j # p(m) (Tkl x =1m

(3.6)

for some ke {I d}. But {X =j i.o.} _c_ T
k

a.s.
n
t

P(m)({Xnt=j i.o.}) >. lira infn_o_(,n)-j > 0 makes (3.6) contradict (3.5) and

completes the proof.

REMARK3.1. Themrem 3.2 as stated as a result about products of

stochastic matrices without reference to Markov chains theory. We have seen

(m)
in the proof that (k) may be expressed in terms of the tail -field

u
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(m) as p(m)(TkIX =u). We shall further consider some characteristic

properties of the sets {E (k)} which for some special cases, may lead to the
n

actual identification of {a(m)(k) }.
u

THEOREM 3.3. Suppose that j is positive and {Xn=j i.o.} U=ITk p(m)

a.s. where {Tk} are P
(m)

-atomic sets of /(m), and let {E (k) be some sets such
n

that limn-{Xn gE(k)}n Tk p(m) a.s Let F
k

(t)} be the set of valuesink

n such that E(k)
n

k=l,...,d. Then

E (n) <
neF

k
i (k) Pi,j (3.7)

n+l

PROOF Define An {Xn=j’xn+l (k)},.n+l for n >, m. It is clear that

(m)
P (An,n sF

k
i.o.) 0 (3.8)

Recalln) is the o-field generated by Xm, X with m < n. According
n

to the Borel-Cantelli-Levy lemma

p(m)(An,ngFk i.o.) =0 if and only if

(m) p(m) (Anlmn)) ) 0
nF

k

(3.9)

Notice now that the Markov property of {X :n m} yields
n

p (m) (A
n m(n) p (m) (k)

(Xn+ (3 I0)n+l Xn=3 {Xn=j}

Thus, it will suffice to show that P
(m) (ner p(m)

k
(A l(n)) oo) 0 implies
n --m

(3.7). Assume, by way of contradiction, that

_(n) (m)I [ Pj,i [ P
ngF

k
(k) neF

k1En+
(Xn+

(k) ")mn+1 Xn=3 (3.11)

and write

[ p (m) (X
n ’+I % "(k)mn’+llXn’=J)l{x =j}n’n’eF

k
N {i n}

Y (3.12)
n

p(m) (Xn,+l (k)n,+l IXn’ =j)n’F
k
I {1 n}

Since 0 Y ,< I, for {Y to converge in probability to 0 as n+o, it is
n n
(m) (m)necessary that E (Yn) 0 as n+, where E (Y) denotes the expectation

n

of Y under p(m). However, lira inf E (m)
(Yn) > lira inf (n). > 0 and

n n-o n-o 3

therefore p(m)(lim SUPn_oYn > O) > O. Since the denominator of Yn in (3.12)

tends to as n/, it follows that the numerator of Y will tend to as
n

n/, on a set of positive p(m) probability. Taking account of (3.9) and (3.10)

yields p(m)(ngFkP(m)(Anl vine(n)) o) > O, a contradiction that completes the

proof.
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REMARK3.2. For homogeneous Markov chains with period d the sets {E (k)
n

become {Cu+n(mod d)}, i.e. the cyclically moving subclasses of the recurrent

class to which j belongs. In this case

p(m) ({Xn g Cu+n (rood d) }IXn-I g Cu+n-I (mod d)
}) I,

limn_o{XngCu+n(mod d)} Tu, u=l d, and (3.7) holds trivially in view

(n)
of Pj,i 0 for iCu+n+l(mod d)"

The results and proofs of this Section rely on Cohn [5], [6] and [8].

4. A CLASS OF COUNTABLE CHAINS.

We shall next consider a class of stochastic matrices (Pn) satisfying

the following condition

(m,n)(A) S admits the decomposition S T U C where j T if +/-lmn_ori, j
0

for all m and i and j C if there exists m such that j is positive

for {X :n >. m}.
n

A partition T, CI,C2,... of S will be said to be a basis for (Pn) if for

any j g C
k

and m large enough, {Xn=j i.o.} =T
k

a.s. is a P
(m)

-atomic set of J(m)

THEOREM 4.1. Suppose that (P) satisfies condition (A). Then the
n

imn-ri J(m,n)n)
(m,n)

existence of /P for i,gS, m 0 and j g C with P,j > 0

is a necessary and sufficient condition for the existence of a basis T,

CI,C2

PROOF. We know from Proposition 3.1 that A= {X =j i.o.} is a
n

finite union of P(m)-atomic sets of m), i.e. A Uk=ITk. We shall first

prove that d=l. Suppose otherwise i.e. d>.2. Since {X =j i.o.}TIUT2n
Theorem 3.1 implies that there must exist two sequences {nk} and {n} such

that

(m,nk) (m,nk)
lira Pi,j /P,j P(TI IXm=i)/P(TI IXm=)
k-o

(m,nk) (m,nk)
lira P /e P(T IXm=i)/P(T IXm=)
k_o i,j E,j 2 2

(4.1)

p(m,n) (m,n)However, .t.mn_ i,j
/P was supposed to exist. Thus (4.1) entails

pCm)(TIlXm=i)Ip(m)(TIIXm=) P(m) CT21Xm=i)Ip(m)(T21Xm=) (4.2)

Further, for any set A in (m) with p(m)(A) > 0, the martingale convergence

theorem in conjunction with the time reversibility of the Markov property

p(m) (AIXn) may be made as close as desired to 1A for n

large enough. It is easy to see that if j is positive for {X :n m} it
n

will stay positive for any {X :n>.m’} with m’ >m, and
n

p(m) (AIXn=J) p(m’) (AIXn=J) if p(m) (Xn=J)p(m’) (Xn=J) > 0. Thus, one may

choose i and m such that for g<1/2 p(m)(T llXm=i) > I- and
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p(m)(T21Xm=) > I-g; since T and T
2

are disjoint we also get

p(m)(T21Xm=i < e and p(m)(T llXm=) < e. It is easy to see that these four

inequalities are in contradiction with (4.2). We have reached a contradiction

that proves that A {X =j i.o.} is a P(m)-atomic set of m).
n

Conversely, if we assume that A {X =j i.o.} is a P(m)-atomic set of(m)
n

then Theorem 3 2 yields that limn_oP (re’n)/p(m,n) (m) (m)
i,j ,j

P (AlXm=i)/P (AlXm=)
completing the proof

THEOREM 4.2. Suppose that (Pn) assumes a basis T, C1,C2 Then

(m,n)(i) for any g Ck, i,Z g S with Z,j > 0 and n large enough

(re,n) (re, n) (m) (m)
lira P

i,j /Pz.j a" (k)/ (k)
n_+c 1

(m)where a(m)u (k) limn+oo (k) p(m,n)u, with lira SUPn_olj gCkP(m’n)u .<CZu (k).
jgE

n

(m)(ii) if for any C
k

there exists % with 0 < % < such that o (k) < 1-% for

JgCk, with k’ # k and m large enough, then i gC
k

implies

(n) < oo.[ " Pj ,i
n=l i.Ck U T

PROOF. Part (i) follows from Theorem 4.1 and Theorem 3.2 if we notice

p(m,n) Indeed although it is notSUPn_o[JeCkP(m’n) lin_>oo.m (k) u,j
that lira

u,3 JeE

true in general, that p(m)(x
n gCk i.o.) p(m)(Tk), {Xn EF i.o.} T

k
(m)

P a.s. obtains for any finite set F cCk. This being true for any k and

(k)
the states of C

k
being positive necessarily imply that FeE for n large

n

p-(m:n) (m)(k) which proves (i).enough and therefore limn_o JgUk u,j u

For part (ii) we may invoke Theorem 3.3 provided that we show that

CkUTE
(k)

The latter follows from taking E (k) {j:p(m)(TklXn=j)n n

noticing that, as shown before, p(m)(Tkl Xn=i) limn_oP (m)(xn gEn(k)}IXn=i)
and arguing as in the proof of Proposition 1.1.

RE,lARK4 It is easy to see that in case that lira I gT
P(m’n) 0 for

n-o u,j
(m) p(m,n)all u g S we get that u (k) limn-ojgCk u,j

This happens when

(m)
limn_oP (X

n
gT) 0. In particular, the finite chains always satisfy this

condition.

The results in this Section were derived in Cohn [8].

5. CONVERGENT CHAINS.

A chain {X will be said to be ope$ if limn+oop(m’n).n l,j
exists for all

m, i and (see Maksimov [15], losifescu [ii], and Mukherjea [17]) Of

course, this definition depends only on (Pn) and does not need to involve a
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chain {X }. As before our results may be read off without reference to a
n

Markov chain structure The class of matrices (P)for which {P.(m:n)}converge-
n

is a subclass of that considered in Section4 and, naturally, will lead to

stronger properties For convergence chains we shall identify the limits of

{p(m,n)} rather than those of their ratios as was done in the previous sections
i,J

THEOREM 5. I. Suppose that {X is a convergent chain Then

(i) there exists a basis {T,CI,C2
(ii) for any m, igS and j gC

k

lira P (re,n) (m)
(k) laki ] jin-o

where !m) (k) limn_o
(m,n) (n) (n)

i jgE(k)ri,j k limn-
jeE

(k) j
and .3 limj

n n

with (n)
S
(m)p(m’n)

j ie i i,j
n > m.

(m)REMARK5.1. Since {p!m,n)}. do not depend on the choice of provided
l,J

(m) (m)
that ol > 0, we notice that j/k is also indepedent of

PROOF. Theorem 4.1 ensures the existence of a basis {T,CI,C2 }.

Further, the martingale convergence theorem yields

p (m)
(Xm=il Xn p (m) (Xm=il m(n_p (m) (Xm=il(m)) as n

But
_(m,n) (m)/(n)p (m) (Xm=il Xn=J) i, j i j

and taking into account that {Xn=j i.o.} T
k a.s. is a P(m)-atomic set of

(m) we get

lira
(m) (re,n). (n) (m)
i Pi,X

n
/X P (Xm=ilTk) (5.1)

n n

for almost all g Tk. Further we can argue as in the proof of Theorem 4.2(i)

to conclude (ii) on using (5.1).

COROLLARY 5. i. Suppose that {X is a countable convergent chain assuming
n
(m)

lira p(m,n) limm_oq
(m)

a basis {T,CI,C2,...} and denote qi,j n-o i,j
and qi,j i,j"

Then

qi,j

jlk

0

for ieCk, j ECk

(m) (m)
(k)/ak and since i g C

kPROOF. According to Theorem 5.1, qi,j jai
(m)

im . > 0 and {X =i i.o.} T
k

p(m) a.s. we easily conclude that
i n

p(m) (Tk]Xm=i) as m/oo, and the case i e C
k

and j g C
k

follows. Assume now

that j ;Ck. Then either jeT which yields qij 0 for ieCk, or j Ck, with

k’ #k, in which case ptm)(Tk, iXn=i). 0 as n- is a consequence of
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p(m)(TklXm=i as m+ and T
k

and Tk, being disjoint. Using now Theorem 5.1

(ii) yields qij 0 and completes the proof.

REMARK5.2. Theorem 4.2(ii) holds, of course, for convergent chains as wello

The additional condition imposed on convergent chains does not seem to make

this result any stronger.

The convergent chain concept goes back to Maksimov [15], who considered

the case of bistochastic matrices (P). Extensions to finite and countable
n

convergent chains were given by Mukherjea [16-18], etc. The methods used in

these papers are matricial and the sets of the basis are characterized by means

of some limit points of matrices {Qk with Qk limn-oPk,n" However, such

matricial methods yielded much weaker results and do not seem to permit the

identification of {Qk}O
The results of this section were derived in Cohn [8].

6. FINITE MARKOV CHAINS: THE GENERAL CASE.

We shall now consider the case when s the number of elements of S

is finite. For such chains we shall derive stronger results under less

restrictive or no assumptions on (P }. As before we need start off by
n

considering the structure of (m)

THEOREM 6.1. The tail -field (m) of {X :n m} is finite and the
n

number of Pm)-atomic sets of (m) does not exceed s

PROOF. Let T T
d

be some disjoint sets inm)
with p(m)(Tk) > 0 for

k=l,...,d. As shown in the proof of Proposition I.I, letting

E(k)n {J:P(m)(TklXn=J)>0.5} yields limn_mo{XngE(k)}n Tk p(m) a.s. for

k=l,...,d. It is easy to check that {E (k), k=l,...,d} are disjoint for any
n

n Since p(m)(Tk) > O, {E (k) must be non-empty for n large. However
n

there are s states in S which requires d s and completes the proof.

LEMk 6.1. Let {X :n m} and {X’:n m’} be two finite Markov chains
n n

with strictly positive initial probability vectors (m) and ,(m) and

sequences of transition probability matrices (P) and
n nm "Pn’nm’

(n)respectively. Write (n)i e(m)(Xn=i) (n)m P(m’)(X=i)’ E+n {i:i > 0}

and E ’+ {i: (n) > 0}. Then there exists a number N > 0 such that E+ E ’+n i n n

for m, m’ N and n max(m,m’).

E+ (n) (m)(m,n)PROOF. Suppose that m’ > m and let j g Then . . > 0
n J i ri,j

for some itS and since (m). > O, it follows that p(m,n). > O. By the
1 1,3

(m,m’)_(m’.n)Chapman-Kolmogorov formula there must exist g S such that Pi, ,j > 0.

Thus ,(n) ,(m’)p(m’,n) > 0. We have shown that E+ ’+E Notice that
3 ,J n n

the finiteness of S makes it impossible that E+ ’+cE with strict inclusion for
n n

all m,n and m’ > m. Thus there must exist m and N such that for m’ > m
+ +E
N E Choose now n > N and j gE’+n" Then there is a state igE

+
such
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that ,(n) >. ,(N)p(N,n) > 0 Thus p(N,n) > 0 for i g ’+ + +
leads

j i i,j i,j
E
N

But E E
N

to z(n) >. z(N,n) > 0 and E+ E ’+ obtains for n > N completing the proof
J m n n

THEOREM 6.2.

of subsets of S, {E(k)}, k--I S, such that for m--0,1,...
n

lim p(m,n). /pm,in) (k). (m) /(k) (m)

for J gE(k)n k=l d where (k)=u limn- (k) Pu(,m n)
jgE

n
> 0, and

lie p(m,n) 0

for j gE S
d E(k)

n Uk=l n

Suppose that S is finite. Then there exist some sequences

provided that

(6.1)

(6.2)

REMARK. Throughout the paper we will drop the explicit dependence of j

upon n and so j is not kept fixed, but in general varying with E (k). The
n

same convention will be valid for all the sets dependent on n to be further

considered.

PROOF. Choose m such that the sets {E+} attached to {X :n m} are
n n

maximal. Such a choice is always possible in view of Lemma 6.1.

According to (3.5)

(m,n) in (m,n) (m) (m)
lie Pi,Xn .,Xn e (TklX =i)/e (TklXm=%) (6.3)
no m

for almost all mgT
k, k=l,

Write now

E
(r)
n,k

{j :P(TklXn=J) > 0.5} N {J:l n)/p%,j
i, gS,m=0,1,... ,r-1

p(m)(TklXm__i)/P(m)(TklXm_ )i <

But (6.3) implies

lim{X g
n

for any r and

p(m) (Tk[Xm=i)/p(m) (T
k Xm__) < }_ Tk a.s.

k Take r=2V, --1,2,... For each one can find a number

re(v) such that

E (r)p(m)(TkA U {X g }) 2-, k=l d
n>.m() n n,k

E(r) 2-p(m)(TkA {X e }) k=l d
n>m() n n,k

Define now E "k’l E "r’l for m() n < m(+l) and consider the elementary set
n n,k

properties

A A (B C)

(A A B) D (A A C)

A A (B U C)

(6.4)
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Using (6.4) yields

p(m)(TkA U {X E(k)}) p(m)(TkA U U
n>.m() n n u= m(u)n<m(u+l)

.< p(m)(rkA U {X E(2u)})
u= n (u) n<m(u+l)

n n,k

.< p(m)(TkA U {X gE (2u)}) +
u= n>.m(u) n n,k

u=

2
-(-2)

Similarly one can show

p(m)(TkA O {X E(k)}) .< 2
-(v-l)

n>.m() n n

E(2u){x })
n n,k

(m) E(2u)P (T
k
A N {X g })

n n,k
n>.m(u)

which boils down to

(t,n) (t,n) (m) (m)
lim i,j /P,j P (re lEt=i)/P (rklX =)
n_= t

for j e E
(k)

and i,j e E+. If we notice now that
n t

(k) (m) p (m)
u (TklXm=u) lim p(m)({Xn E(k)}Ixm=u)n

we get that (6 1) holds for states i, j in E
+

which depend on the m that
t

was chosen at the beginning of the proof. We shall nest show that (6.1)

holds for every t with the same sequences {E_(k) constructed above for a

E
+ ,+

particular m Indeed assume m’ #m. Then with our choice of m E

for n > max(re,re’), and

(6.5)

(m’n’) p (n’ ,n)/pu(,nl ,n)+ ei,u u,j j
(m’ ,n)/p (m’ ,n) UgEn’

i,j E,j u(n,, ,n)
(6.6)

(m’,n’)p(n’. n)/eP,u u, 3 ,juE+n’

u(m, (n’) u(n ’)where u’ is a state in E+ ’n)
> 0. Since > 0 the ration’ with P

,j u

p(n’,n)/po n). makes sense on the probability space attached to the chain
u,3 ,3

{Xn:n m} and (6.5) implies

u(n, ’,n) (m) (m
lira p(n’,m)/Pu,j ,j

P (TklXn,=u)/P (TklXn,=u’)
n->o

where j g E (k). Using this in (6.6) yields
n

lim P
(m’ ,n)/p (m’ ,n)
i,j ,j

p(m’ ,n’)p(m) (Tk Xn=U
n
+

u m
(m’ ,n’)p(m)I P ,u (T

k IXn =u)
ugE+n’

p(m) (T
k iXm,=i

p (m) (r
k IXm,=%)

which completes the proof of (6.1).

d E(k) i.o.} P(m) a.s. which entailsTo prove (6.2) notice that {XngDk=l n

p(m)(x gE i.o.) 0. This in turn implies lim p(m)(xngEn 0 and
n n n-o

proves (6.2).
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The tail u-field of a finite Markov chain was proven to be finite in Cohn

[2]. Further Senchenko [19] and Cohn [3] have independently shown by different

methods that the number of atomic sets does not exceed the number of states.

The proof of Theorem 6.1 given here was taken from Cohn [4]. losifescu [11]

has studied the tail u-field structure of continuous time Markov processes.

Kingman [13] has given a geometrical representation of the transition matrices

of a nonhomogeneous Markov chain from which the tail u-field structure may be

derived.

As far as the asymptotic behaviour of transition probabilities is

concerned, it seems that the first result in the case of nonasymptotical

independent chains was given by Blackwell [i] who derived the existence of

limits for the reverse transition probabilities. However Blackwell’s paper

does not refer to the tail u-field notion. The results of this section on the

asymptotics of {P are derived in slightly different forms in Cohn [5] and [7].
m,n

7. SOME CLASSES OF CHAINS CONSIDERED BY DOEBLIN.

In an important but little known paper published in 1937 Doeblin [9]

introduced a number of nonhomogeneous Markov chain models and gave without

proofs several results concerning their asymptotic behaviour. One model was

defined by the following

CONDITION (DI). There exists a strictly positive number 6 such that for

(n) (n)
any fixed states (i,j) either Pi,j >" 6 for all n or Pi,j 0 for all n

Doeblin asserted that in this case it is possible to decompose S into

disjoint ’final classes’ Go,G G
v

and each final class G, i v

may be further decomposed into ’cyclical subclasses’ {Ci(); i=l d()}.

These have the following asymptotic properties (according to Doeblln) as

(i) e!m:n) 0 for every ieS and jcGOl,j

(ii) p(m,n). 0 for every i c G and j G
(mn)

0 provided(iii) if i j gG with igC() and j C,() then Pi,j
that n m # (’-) rood d()

(iv) if i j cG with igC() j gC,() then p(m,n) p(n) +gm,n)i,j j ,j
provided that n- m (’-) mod d(a).

Here e!m: n) 0 exponentially as n for any m, i and j and the limit
1,3

distribution {p(n)} satisfies jeC,()P
(n)

U
v

(v) for ig
=0 G j C() and some d(), = v

p (m,n) p (m) i,n () ]p !n) + (m,n) (n) (m,n)
i",’3 3 i,j where P.3 e.i,3, are as in (iv) and

P(m)[i,
n ()] is the limit as r of the probability, given X =i, that

m

Xn+rd( g C().

Doeblin subsequently relaxed assumption (A) allowing positive p(n). to

tend to 0 as n oo. More precisely he considered



PRODUCTS OF STOCHASTIC MATRICES AND APPLICATIONS 221

CONDITION (D2) There exists a strictly positive number and some N >.
(n) >. for n >. N orsuch that for any fixed pair of states (i,j) either Pi,j

limn_p
(n) 0

Two subclasses of chains satisfying Condition (D2) were further considered:

P
(n)those satisfying In=lmax(i,j)gA i,j< (Condition (D)) and those satisfying

_(n) (n) O}.n=imax(i,j)gAPi, j
(Condition (D)) where A {(i,j):limn_oPi, j

To study chains satisfying Condition (D2) Doeblin proposed introducing an

associated chain, derived from the initial one by taking 0 for the positive

one-step transition probabilities tending to O. However, by so doing the

transition matrices become nonstochastic, and it seems to us that Doeblin

intended to add the transition probabilities replaced by 0 to the ones bounded

away from 0 in the same row to preserve the stachasticity of the matrix. But

there is considerable leeway in defining a matrix in this way and Doeblin’s

details are rather sketchy.

In the case (DI) it will be easily seen that the associated chain may be

defined in anycay described above, but in general we shall have to use some

rguments based on the tail o-field structure to justify the definition that

we are going to adopt for an associated chain.

We proceed now to define an associated matrix. For the sake of definiteness

we shall consider a matrix in which the entries of the initial matrix replaced

by 0 are all added to the first entry in their row larger than 6. More

that P’ (p:(n.)) is an asociated matrix of P if p,.(n.) 0precisely, we say
n i,j n ,3

(n) (n) + j Pi,j(n)for (i,j)EA; Pi,j(i) =Pi,j(i) ES
i

j(i) being the first entry in the ith

’I. (n)
for the pairsrow such that (i,j)A and S.I {j:(i,j)EA}, and Pi Pi,j

(i,j) such that (i,j) A and j >j(i).

A Markov chain assuming the initial probability vector m) and the

transition matrices n’(P’n>.m will be said to be associated to {Xn:nm}.
Denote by {E:n=0,1 a sequence of sets with the property

infn-ominigE*n)-i > 0 and write E**n S-E*n If {E**}n are present, thenlim
n

(n) o.inf maxlim n-o igE** i
n

LEMMA 7.1. Suppose that there exists a sequence of positive integers

m <n <m2<n2
< such that u=lP(mu’nu)i,j

p(m)(x
n

=j i.o.) > O.

where igE* and j eS. Then
m
u

PROOF. Using the argument employed in the proof of Theorem 3.3 we get

that P(m)(A
u

i.o.) > 0 where Au {Xm =i, X
m
=j}, u=l,2 But

u u

p(m)(x
n
=j i.o.) >. p(m)(A

u
i.o.) > 0 as stated.

u

IN what follows we shall consider a condition that contains (D 1). We call

this Condition (D)
(n)

(i) either the {E**} are empty or lim . 0 for i E**, and
n n-o I n
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(n)
(ii) the sequence tPi,j:i S, n=l,2,...} may contain O’s but its positive

values are bounded away from O, i.e. there exists 6 >0 such that

inf
(n)

i,j,nPi,j) > 0 where inf’ means that the infinum is taken over the strictly

positive matrices of the sequence.

Notice that (D)(ii) holds under (DI). As far as (D)(i) is concerned

an arbitrary associated matrix P’ Pn’ say may be considered and taking into

account only the position of its positive and null entries one may derive the

periodicity and the cyclically moving subclasses of a homogeneous Markov chain

assuming such type of transition probability matrix. Choosing D to be a

multiple of {d(a), = ,v} we can easily conclude that Pm,n+ND have all

ND
the positive and null entries in the same position as P1 and that

e (n, n+ND)
1,3"

i,j e Ck(), k=l,...,d()} are all positive for N sufficiently

large, 6ND being a lower bound of these entries. Using this we can show that

Ck(a fi E*
_(n+ND) (n)

n Ck() since for j g Ck(), . >. cND
with c mlnigS i3

Therefore E* m U
v

n- a=IGa for n sufficiently large Further it is easy to see

that E** G
O

and it will be seen that GO plays in this case the role of a
n

’transient’ set.

THEOREM 7.1. Suppose that (D) holds. Then

(i) there exists a sequence of disjoint events of S, say

E (I) ,E
(d)

n=0,1, and a positive integer N such that for any m=O,l,
n n

U {X E(k)} Tk p(m) a.s. (7.1)
n nn=N

for k=l, d.

(ii) If E E
.d E(k)

n Uk=l n
are present then for i eS m=0,1,.., and j g E

n

lim P(m’n) 0 (7 2)
i3n-o

For ieS, m=0,1 j eE
(k)
n

n>.N

p (m,n) (n)
z,j J

(m)
P U {XngEn(k)}lXm=i)

n--N

(m)( U {XneEn(k)})
n=N

+ o(n)) (7.3)

(k)
For ieE

m
j e E (k)

n
mN

p!m:n)
(m)

P

(n)

U {X gE(k)})
n n

n=N

(n)+ Or. ).
3

(74)

(k)For
m

jE(k) m,n>.N
n

p(m,n) 0 (7.5)
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PROOF. We shall first prove that for n sufficiently large E** E
n n
(n)where P(m)(x E i.o.) O. Suppose that for an infinity of n’s 6Pi,jn n

where i E* and j E**_ Then (n+l) !n) But lim infn_oon) > O" this
n n+l j i

(n) 0 wheneverentails lim infn_O
n) > O, which is impossible. Thus, Pi,j

i SE* and j eE*@, for n sufficiently large. It follows that p(m,n) 0 for
n n1 i,j

ieE* and j E** and by Theorem 6.2 we get that E
(k) NE** must be empty for

m n n n

n N since otherwise (6.2) would be invalidated. Therefore E
(k) N E* E

(k)
n n n

(n) 6 may happenfor n sufficiently large and according to Lemma 7.1, Pi,j
only for finitely many n with i e E

(k)
and j e-(k’) with k’ # k It follows

n mn+l
that P(m)({X EE(k)}I{X

n E}) for k=l d and n N which in
n n -I

conjunction with limn_>oo{Xn E n)} Tk p(m) a.s. yields Tk Un=N{XnE(k)}n
and (7.1) is proved.

It is easy to see that Theorem 6.2 may now be applied to conclude (7.3)

and (7.4). Finally, (7.2) follows from Lemma 7.1, and (7.4) is a consequence

of the proven part (i).

REMARK7.1. For the chain satisfying Condition (DI) {E(k)}n are the

subclasses {Ck(e)} in their cyclical order, i.e.

{E (k)
n {Cu+n(mod d())

where u=l d(a), a= v and k=l =id(a)._ Indeed,

p(m) ({Xn g Cu+n(mod d(a)) (a) }IXn_ Cu+n_l(mod d(a)) (a) }) and

limn-m{Xn g Cu+n(mod d()) () Au (say) p(m) a.s. Besides, Au belongs to

J(m) and therefore it is either P (m)
-atomic or a union of P

(m)
-atomic sets

of (m). Since {p(n,n+ND).. i,j Ck(a), k=l,...,d(a)} are positive for all
1,3

n If A were not P(m)-atomic then there would exist two P(m)-atomic subsets of
u

Au, A’u and A"u and by Theorem 7.1 there would also exist two sequences of sets

{E} and {E"} such that UnN{Xn e E’} A’ p(m) a.s. and UnN{Xn E"} A"
n n u n u

p(m) a.s., in which case (7.5) would be contradicted. This proves Doeblin’s

results stated before.

We next consider conditions which contain as particular cases Doeblin’s

’) and (D) First we considerConditions (D

(n)
CONDITION (B). There exists > 0 such that if An {(i,j): Pi,j < }

(n)
0 as nthen max(i,j) AnPi, j

For chains satisfying Condition (B) we consider an associated chain in

the same way as in the case (D), i.e., we define the associated matrices

(P) in which the entries of the initial matrix replaced by 0 are all added

to the first entry larger than in their row. In fact the whole definition

of an associated matrix given before may be copies here word for word, the

only difference being that A is replaced by A
n

where A {(i,j): p(n) < 6}"
n i,j
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S. and j(i) also depend on n and should be denoted by S. and j(i,n)

respect ively.

Let us next consider

CONDITION (C). There exist sequences of disjoint sets {F(): n=O,l
n

F
(e)= ,d’ with d’ >. 2 and a number N such that

_(n)
0 for ie andPi,j n

j F()
for n > N = d’

n+l

Theorem 7.1 shows that (D) is a particular case of (C); the difference

between these two conditions lies in that limnooo{Xn e F(n)} Un=N{Xnoo e Fa(n)}
p(m) a.s. need not be an P (m) -atomic set of (m), i.e. it may be a union of

P
(m)

-atomic sets of j(m).
We are now in the position to formulate the following two conditions.

.=o (n)
CONDITION (D). (i) (B) is satisfied with

n=lmax(i,j)eAnpi, j
<

(ii) the associated matrices satisfy (D).
CONDITION (D*). (i) (B) is satisfied with imax(n= i,j)

(ii) the associated matrices satisfy (C).

THEOREM 7.2. If (D) holds, then for iS, m=O,l and j g E’
n

lim p(m,n) 0 (7 6)
noo 1,3

and for ieS and j eE(k), k=l,...,d’

(m,n) n(n)
PCm) (Tklxm=i) (n)+ o(zj ). (7.7)P

i, j j p (m) (Tk)

PROOF. It is easy to see that if A {(Xn, Xn+N) gB} for B=$X... xs,
N+I times

and if ig {j: !m).(m) >0}, then

ip(m) (AiXn=i) p, (m) (AlX=i) en (7.8)

n n (i,j)gPi,j for n > m and any N > I. The standard monotone

class argument extends (7.8) to any A gn
Suppose that we choose an associated chain {X’:n u} such that (u) > 0

n i

(n)for i E*u and lim infn+oomlniE, i
> u Then if we write (7.8) for m u

n

and ig{j: (u) > O} and take A {X =j} we get
j n

(u,n) (u,n)
P P’. g (7.9)
i,j 1,3 u

p(U,n) (n) (u) ,n)
But !n) liSu)

-i,j ’ liS i
p,.(u, and therefore

J j 1,3

(n) I(n) (u) -[(u,n) P’,(.’n)I’’ g (7.10)I. -. I i,j , uJ J ieS

On the other hand (7.9) implies
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(n)
!im infn_ominjgEn,j lim infn-minjEEn.7[(n)3 E*g > 0 which entails E * m

u n n

E’**} in (7 8). Sincefor n sufficiently large Take now A {Xn, e n’

limn,_>ooP’(m) (X, E’**n’Ix’=i)n 0 we get lim SUPn,+ooP(m)(Xn, E’**IXm=i)n "< n
!n) (m)

Further it is easy to see that {j:,.(n) > O} c {j: > O} and since ’. > 0
3 3 3

for jcE* and m sufficiently large, we get
m

lim SUPn->ooP(m)({XngE’**}n {XmgE*m}) m But the sequence {E*n} has the

property lim SUPn+ooP(m)(XnE*n) I. This leads to limn_oP(m)(XnE** 0

and therefore E* E*’and E’** E** for n sufficiently large.
n n n n

Consider now a P (m) -atomic set of ..m), say T
k

Then by Theorem 7.1

limn_o{Xn e E(k)}n Tk p(m) a.s. and (7.8) implies

IP(m)( U {XrE(k)}IXm--i)r -p,(m)( U {XrEE(k)}IX’=i)Irm gm (7 II)
r=n r=n

and

IP(m) {Xr eE(k)}IXm=i)r -p,(m)( {Xr E(k)}iX,=i)irm gem (7 12)
r=n r=n

Taking the limit over n

yields

in (7.11) and (7.12) and using the triangle inequality

IP ’(m)(lim sup{XeE(k)}IX’=i) _p,(m)(lim inf{XeE(k)}IX’=i) g 2e (7.13)
n’-o n m n’-o n m n

Multiplying (7.13) by ,.(m) assuming over i and taking the limit over m

we get that limn-o{X’-n g E
(k)}- a.s. with respect to p,(m) exists, has positive
n

probability and is either P’ (m)-atomic or a union of P’ (m)-atomic sets of

We may now interchange p(m) and P’ (m) and get that

p (m)
(lim sup{X E Ek) }I Xm=i) P (m)(lim inf{X’ EE’k)}IXm=i) .< 2g (7.14)

n n m

Now because m) and
(m)

are finite, we conclude that their atomic sets are

in a one-to-one correspondence. Therefore d d’ and

p(m) (limn-o{Xn e E(k)}n A limn_o{Xn e E’ (k’)
})n 0

p,(m) (limn-o{X’n e E(k)}n A limn_o{X E’ (k)
})n 0

for k,k’ g {I ,d}. Since we have seen in the proof of Theorem 7.1 that

E ’(k) fl E’* E’* for n large enough it follows that E ’(k’) c E
(k)

for k
n n n n n

sufficiently large. Now it is easy to see that P(m)({X g E’ i.o.}) 0 and
n n

complete the proof by an already familiar reasoning.

REMARK7 2. The sets E ’(k) corresponding to the associated chain {X’:n m}
n n

are in general smaller than the sets {E (k)} for which Theorem 7.1 guarantees
n

the same convergence property (7.7). It is therefore possible that there

exists states i E’ with i g E
(k)

for some k and n However such states
u n u n
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have the property p(m)(x =i i.o.) 0. The usefulness of using {E ’(k)}
n u n

instead of {E (k)
lies in the fact that the former are more easily obtainable.

n
For example in case (D) we have seen that such sets may be identified by

means of an arbitrary one-step transition probability matrix.

We turn now to the case (D*) which is considerably more complicated than

the ones considered so far. We shall first need the following

LEMMA 7.2. Suppose that the sequence of sets {A is such that for
n

m < n <m
2
< n2< and a sequence {ik} with ikCE k=1,2 and some N>.

(m
k ,nk)I pin P. (7.15)

k=l iCA Ik’J
n
k

(n)
0 for igA and j c with nN Thenand Pi,j n An+l

(i) p(m)(Xnk Jk i.o.) > 0 for JkgAn
k

k=l 2

p(m) U (Xn g An}lEa--i)
(ii) lip p(m,n). /(n). n=N

"J J (m)n-
P U {X cA })

n n
n=N

for icS, m=0,1, j cA
n

n=l,2

PROOF. (i) Let us consider the subchain X X X X We shall
m n m

2 n2

show that limk_o{Xnk gA a s is a p(m) -atomic set of ,(m), where (m) is

(n)
the tail o-field of {Xml,Xnl,.... Since Pi,j 0 for igAn and j gAn+1 with

n>.N, we get Un=N{Xn EAt lipk-o{XnAnk} p(m) a.s. If limkoo{XnkCAnk} is

p (m)
atomic

(m)
not a set of then it must be a union of atomic sets of J’ (m)

In the latter case, by Proposition 2.1, there must exist sequences

A(r)
T
(r){A(I) A(v)} with n’ c {ml,nl,m2,n2 nn n’ such that lim ,_o{Xn, e n’

(say) p(m) a.s. for r=1, v. Further since ikeE* there must be a number

M such that c Uv A(r)
for k >. M. But {A(I) A(v)

are disjoint for all
r=l m

k
n’ n’

(r)
n and therefore there exist the sets Al,...,Av with Ar= {mk:ikCAn },

m

A(r) for g A Sincer=1 v and UVr=IAm m {mk:k >" M}. Take Jk n
k

mk r"

(mk,nk)
-mk +/-k’

_
cAkPmk’nk)- if we apply Lemma 7.1 we get thatIk=M P

ik, j k
"< ’= J k

(mk,nk) (mk’nk)
< whichPo < for r=l v and therefore k=M Pik,JkA

k k,Jk
gA a.s. is a P(m)-atomic set of ’ (m)

contradicts (7.15). Hence limk_o{Xnk n
k

Further limk_o{XnkgAnk} T’ a s. is also a Pm)-atomicJ set of --m) since
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otherwise m) would contain at least two P(m)-atomic sets T and T2. If

{E (I)} and {E (2)} are some sequences corresponding to T and T
2

such that
n n

limn-{Xn gE(1)}n TI p(m) a.s. and limn+oo{Xn aE(1)}n TI p(m) a.s. and

(I)} T p(m)limn-{Xn g E(2)n T2 p(m) a.s., we also get limkooiXnk g Enk a.s.

_o{Xn
k

(2)
T2 p (m)

and lim
k

g Enk a.s. contradicting the atomicity of T’ with

respect to ’(m).
Suppose now that Jk gE* for an infinity of k’s. Then {Xnk Jk i.o.} has

n
k

positive p(m) probability. But Jk g An
k

and as seen before limk_o{XnkgAnk} T
u

Jk Jkp(m) a.s., which leads to {Xnk i.o Tu p(m) a.s. If E**nk for k

large we get (i) by applying Lemma 7.1. Indeed, ikgE* N A for k

sufficiently large and because limk_o{X gA limk_o{Xmk E
(u)

T
me m

k
me u

p(m) a.s. we get that ikE* N E
(u)

for k sufficiently large and (i) follows.

’:k=l,2, i.e.To prove (ii) we shall first prove it for a subsequence {n
k

we shall show that A N E (u)= A for k sufficiently large Notice that
n
k

n
k

A E is not empty for an infinity of k’s. Indeed, by (7.15) and Lemma 7.1
n
k nk

it is impossible for this intersection to be nonempty for all k sufficiently

large, since then (i) would imply the positivity of p(m)(X g A N E i.o.)
n
k

nk
n
k

contradicting P(m)(x g E i.o.) O. Therefore there must exist a
nk

n
k

subsequence of {nk} say {} such that A E
(u) A for k=l,2 We

n
k

n
k

n
k

shall further show that using the existence of such a subsequence {n} we

deduce (ii)

We first prove (ii) for m >. N and igA Write
m

Ym, i p(m)(TulXm=i)/p(m)(Tu) and take j An
to get

p(m,n)

(n) m,i
3

s (m,n ’) (nc,n)I k
Pi, P,j
(n)(n,n)

P
=i ’J

(7.16)

n)(m, n) (n) (n
k(p )p

i, Ym,i ,j

n
(n) (nk,n)

P
,j

n
k
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(p
(m,n) (n) (n,

(n) (n, n)rgAn I g P
,j

n
k

n)

I’ (nl)rgA
n
k m

r

(m, nl) (nl)
i, r Ym, ir

where the prime in the last two sums indicates that the sum is restricted to

(nl ,n)
the values r such that P > 0. Now if n we may take k and

r,j

Theorem 6.1 implies that the last sum in (7.16) goes to 0 as k o%

We prove now (ii) for arbitrary m and i Consider the conditional

probabilities

p?(m,r). p(m)(x
m’+l Am’+l’’’’’Xr-I Ar-l’Xr=JlX =i) (7.17)

l, 3 m

for j EAR, > N, m’ max(n-l,m) and r > m’ + I, and

p,.(m.,m+l) p!m:m+l) (7.18)
i,] 1]

Since {Xn gAn _c {Xn+l gAn+l} for n N, a slight modification of a standard

reasoning from the theory of homogenoeus chains yields

n-I
p(m,n) I I P*(m’E)P(E’n) P*I-’n)i,j E--m’+l kgA

i,k k,j
+

i

We recall now that for >. N and k gAE we have already shown that

p(,n)
limn- k’n)1. Y,k where Y,k p(m) (T)

3 u

N’ with N’ > m’ +I
N’. . p,(m,) (,n) (m) N’

--m’ kgA
i,k Pk,j P (--m’U {X A} IXm=i)

lira
n r!n) p (m) (Tu)

(7.19)

It follows that for an arbitrary

(7.20)

Because N’ was arbitrarily chosen (7.19) and (7.20) together imply

lira inf
n->o

(m,n) p (m)
Pi,L (Tu IXm=i)
!n) p (m)

(Tu)3

(7.21)

for any m and i

Further

(re,n). !m)Pi’j
igS

I (n)
3

and (7.21) yields

p(m) (Tu Xm__i)
iSm)

p (m)
(Tu)
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p !m:n) p (m) (T
u iXm_ i)

lim 1,3
(n) p (m) (r)n-o j u

completing the proof.

THEOREM 7.3. Suppose that (D) holds and let I’ d be a partition of

{I d’} and E (k) U F() k=l d. If for any ke {I d} theren e
k

n

exists a sequence of positive integers m <n <m
2
<n

2
<... and a sequence of

states i(k),i (k),... such that i
(k) e E* for u sufficiently largem m

2 m m
u u

(m ,n
(n)u=l rain p u u

and ax
(k) Pi,j O, then

jeEn(k) im(k), j icEn(k) j En+lu u

(i) for any i g E (k) p(m)(x =i i.o.) > 0, k=l dn n n n

(ii) for i eS, m=O,l and j e E
(k)
n

n=l2,...

p!m:n) (n) p(m)(Tkl X =i)
(n))m + o(j, 3 j p (m)

(Tk)
where T

k limn-{Xn eE(k)}n p(m) a.s., k=l d

(iii) for any ieS, m=O,l and j e E S
d

E (k) n=l 2
n Uk= n

(m,n)
lira Pi,j 0
n-o

(iv) if k contains more than one element and if F () c -(n)
then the

n

average sojourn time spent in the sequence of sets {F() (a)__ given thatrn+n

X =i with ieF
()

goes to as n+ o, but p(m)({X eF() ult.}) O.n n n n

PROOF. It is easy to see that (i) and (ii) follow from Lemma 7.2, whereas

(lii) is implied by Theorem 6.2. It remains to prove (iv). Let us denote by

E(Y
(n) IX =i) the average sojourn time referred to in the statement of then

F (a)Theorem. By definition, y(n)e m on the set {X
n
EF()n }N N {Xn+m+l g n+m-l}

{Xn+m F()}n+m for re=l,2,... Because % contains more than one element, and

by (i) p(m)(x =i i.o.) > 0 for any sequence {i with i E(k), we concluden n n n n

that p(m)(y(n) < oo) i. Further, it is easy to see that since

F
()

and any k I we get p(n,n+m-l)
()

p,.(n+k) for i e
n+k,j (a) i jJ e-n+k+l j eFn+m-I

(n) ,I.)[ 0 as nfor i e F(a)n and m 2 Taking into account that Ipi, j Pi
for all i,j eS we get

F (a)lira p(n)({XneF()}n 0 0 {Xn+m-i e n+m-l}IXn=i)
n-o

which implies that limn_oE(y(n)IXn=i) for i e F(a)n and e Finally,

since p(m)(x g F () i.o.) p(m)(x
n

(E(k)_F()) i.o.) p(m)(Tk) > 0 we get
n n n n
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that p(m)(X g F (a) ult.) 0 and the proof is complete.n n

As a corollary to Theorem 7.3 we shall give a result that describes the

asymptotic behaviour of a chain that satisfies Condition (D*).
COROLLARY 7.1. Suppose that (D*) holds and let i,2 d be a

_(n)
C(a),partition of {(,), =I v ;=I d()}. Let E

k U(,a)gFk
(n) (n) Assume thatk=l d and denote g(,);(E,,a,) maxigc(a), jgCc,(a) Pi,j

Zn=Imine(n) where the minimum is taken over all(,) (’,’)

(n)
0 for ( a)gk{(,);(’,’) gxk

k=l d}, and that e(,):(,,,)
and (E’,’)k’ Then the statement of Theorem 7.3 holds.

We shall omit the proof of this result, which may be carried out by

arguments already used in this paper.

We notice that in the case of Condition (D’) Doeblin’s statement is wrong.

However, examining Doeblin’s formulae makes it clear that he felt that unlike

the previous situations, the limit of the conditional probability that the

chain will circulate through the cyclical subclasses of a fixed class may not

exist here. The analogy to the homogeneous case seems to break down for the

chains satisfying (D) since several atomic sets of the tail o-field of the

associated chain may be lumped into one atomic set of the tail o-field of the

original chain.

Theorem 7.3(iv) generalizes a result stated by Doeblin about chains

satisfying Condition (D). It is hard to see how Doeblin could have reached

his conclusions in this respect, given the knowledge available at the time his

paper was written.

The results of this section, in slightly different form, were given in

Cohn [7].

8. WEAK ERGODIC ITY.

One of the main concerns of the theory of finite stochastic matrices has

been to characterize sequences of matrices satisfying the so-called ’weak

ergodicity’ condition, i.e.

(re,n) (m,n)
llmri, j ,j 0 (8.1)
noo

for any i,j, and m This condition has been introduced by Kolmogorov [14]

and most papers on nonhomogeneous chains are related to it. Doeblin [9] has

found necessary and sufficient conditions for (8.1) and Hajnal [I0] has derived

similar conditions unaware of Doeblin’s results. We shall first give a result

that relates weak ergodicity to the structure of the tail o-field.

THEOREM 8.1. The following conditions are equivalent

(i) weak ergodicity;

(ii) any Markov chain {X :n m} with transition probability (Pn) and
n nm

arbitrary initial distribution (m) has a P(m)-trivial o-field m).

PROOF. Since S is finite we may assume, if necessary after relabelling

the states at successive times n=O,l,..., that there is a positive state j gS.
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Then Theorem 3.2 and Remark 3.1 imply that

lim pCm,n’)/pm,n’). p(m)(Tkl X =i)/pCm)CTklXm=A C8.2)
n,_m 1,] m

n gF
k

If (8.1) holds then p(m)(rklXm=i)/p(m)(Tklxm__) necessarily follows by

(8.2). However, if m) is not P (m) -trivial this is not possible as by the

martingale convergence theorem p(m) (TklXn--i) must have values close to 0 for

some i in view of limn-mP(m)(rklXn IT
k

p(m) a.s. Thus m) is

P(m)-trivial. Suppose now that m) is P(m)-trivial. Then by Theorem 6.2 we

know that

lid P(m’n)/P(,mn)i. (8.3)

for i E But lid p(m)
n n-o (X

n
g En) 0 for all m and (8.1) follows

THEOREM 8.2. Let (Pn) be a sequence of finite stochastic matrices. The

following two conditions are equivalent:

(i) weak ergodicity;

(ii) there exists a sequence of sets {E I)}" such that for i,ES and mgN
n

(m,n) (m,n)lim ei,j /Pi,jn-co

for j g E (I), and for any leS and m=O,ln

lim I p (m,n)

jeE(1)i, jn-+co
n

This result is a consequence of Theorems 6.2 and 8.1.

A classical type of results in the theory of nonhomogeneous Markov chains

establishes weak ergodiclty in terms of some coefficients attached to a

stochastic matrix. A historical account of such coefficients, that goes back

to Doeblln, may be found in Seneta [20]. Kingman [13] has proven a general

result of this kind. Usually, the proof is carried out by some inequalities

relating the coefficients of the product of two matrices to the coefficients

of the matrices themselves. For example, Hajnal [I0] considered the following

coefficient attached to a matrix P with entries P,8 s, 8 s

s
{P} min min(p 8 ’P’ 8,’ 8=1

We show next that such results are immediate consequences of the results

given in this paper by proving the following theorem due to Hajnal [I0].

THEOREM 8.3. A sequence of stochastic matrices (Pn) is weakly ergodic if

there exists an increasing sequence of positive integers nl,n2,.., such that

’j {Pnj ,nn+l
diverges.

PROOF. According to Theorem 8.1, (Pn) is not weakly ergodic if the tail

o-fieldm)
is not P(m)-trivial and thus assumes at least two P(m)-atomic

sets. According to Lemma 7.1 we must have
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(nj ,nj+l)
j=l P < whenever g E

(k) N E* and B g E
(k’)

with k # k’ which makes,
n.3 n nj+

convergent for any sequence n <n
2
< and finishes the proof.j {Pnj ,nj+

There is an important result for bounded positive matrices known in the

demographic literature as the Coale-Lopez theorem (see Seneta [21]). The

result was given in a somewhat more general form in Seneta [21] and its proof

seems rather laborious. The specialization of the Coale-Lopez theorem to the

case of stochastic matrices reveals a strong asymptotic independence property

We shall state such a property under a less restrictive assumption on the

stochastic matrices.

THEOREM 8.4. Let (Pn) be a weakly ergodic sequence of stochastic matrices

(o,n)such that lim inf max > 0 for any j gS. Then for all i gSn-o igs i,j

lim p(m,n)/p(m,n)
n_o i,j ,j

The proof follows easily from Theorem 3.2 and Remark 3.1 in view of the

fact that {E are empty.n
(n,n+r)

O
The Lopez theorem imposes the condition Pi,j >" > 0 for a certain r

and and any n This clearly implies weak ergodicity, since as seen in the

course of the proof of Theorem 8.3, the failure of weak ergodicity prevents

(n,n+ro)
P.
1,3

from being bounded away from 0 for all i,j and n

The results of this section were derived in Cohn [5].
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