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1. PRELIMINARIE S.

Let G 2(R) be the oriented real Grassmann manifold of 2-planes in Rp+2. The
P,

purpose of this paper is to characterlse this manifold and its non-compact dual

G* (R) by means of a particular tensor field T of type (I 3) and the Welngarten map
p,2

on geodesic spheres.

The problem was first considered by L. Vanhecke and T.J. Willmore who

characterised spaces of constant curvature and spaces of constant holomorphl c

sectional curvature [I]. The case G 2(R) has considered by the second of the
P,

authors in [2]. These results were generalised by the first author and D.E. Blair in

[3], [4]. In this respect the conditions we need differ from those of [2] a,d, as our

proof shows, some of the conditions given there are redundant.

We begin with some general remarks on Jacobi vector fields and geodesic

spheres. Let M be a Riemannian manifold of dimension n>2 and let U be a normal
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neighbourhood of a point mgM. We may take U to be a geodesic ball of radius r.

Choose an orthonormal basis for the tangent space M and let {i}, i=l,...,n be the
m

corresponding normal coordinate system on U. Write N for the unit vector field on

i
U-{m} tangent to geodesics from m, thus N x___ . where s denotes geodesic

s x

distance from m. Let V be the unlt tangent field to a geodesic y:(-r,r)/U, with

X(0)--m, choose a non-zero vector W--ai( normal to V and let Y--a
i
s on U.

m m m x

V
2

Then on Y-{m}, we have [Y N]=0 and R(N Y)N=VN yN=VNY. Consequently the vector field

X on X defined by XX(O)=a X(o) -r<o<r, satlfies

vx=VNX ,.,

on Y-{m} and, by continuity,

R(V,X)V=V2vX on X. (1.2)

Thus X is a Jacobl vector field on X for which

X =0 and V X=W (1.3)
m V m

m

In particular, X is normal to V and, for any point Q on X the normal space to

V is formed by evalutatlng all such Jacobl vector fields at Q. Now write A=-V
Q N

For any geodesic sphere S In U with centre m, the restriction of A to tangent vecotrs

to S is just the Welngarten map wlth respect to N as unlt normal vector field. Also

by (I.I) (1.2) we have on Y-{m}

R N, X) N -VNAX--A2 X- VNA X (1.4)

This equation is linear in X, hence, from the above remarks, it is valid for arbitrary

vector fields X on U- {m} where we note from the definition of A that AN=0.

Now suppose M is a Riemannian locally symmetric space. With the previous

notation, suppose W satisfies
m

R(V ,W )V =c.W
m m m m
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Let X be the Jacobi vector field on y satisfying (1.3) and W the parallel vector

field on Y with initial value W Since VR=0 we have R(V,W)V=cW from which fW is a
m

Jacobi vector field on Y with the same initial conditions (1.3) as X when we choose

f(O)

Icl-I/2sin(Icl I/2o), if c < 0

c- I/2 sinh(cI/2), if c > 0

if c= 0

Thus X=fW and as a consequence of (I.I) and the definition of A

AW Nfw. (1.5)
f

Since the Riemannian curvature at m is bounded, the set of elgenvalues c of

R(V ,-)V taken over all unit vectors V is bounded, say Icl < k2,k > 0. Thus
m m m

if we take U to be a geodesic ball of radius < then f 0 on Y-{m}. We now

have the following immediate consequence of (1.5).

PROPOSITION I.I. Let m be a point in a Riemannian locally symmetric space of

dimension > 2. Then m has a normal neighbourhood U such that, for each unit vector

V gM and corresponding geodesic , the parallel translate of an eigenspace of the
m m

linear map R(V ,-)V along Y is contained in an eigenspace of the Weingarten map for
m m

each geodesic sphere in U with centre m.

2. STATEMENT OF MAIN THEOREM.

We consider the Grassmann manifold G 2(R) as the homogeneous Riemannian
P,

symmetric space S0(p+2)/S0(p)xS0(2). The tangent space at any point meG (R) can
p,2

be identified with the vector space M(px2 of all px2 matrices over IR, considered as

real vector space with inner product

g(X,Y) < X,Y > trXY
t (2.1)

which is clearly Hemitian with respect to the almost complex structure J given by

J(XI ,X
2 (-X2,X I) where XI,X2 are column vectors of the form pxl. An invariant

Kaehler metric g is then defined on G (R) and the corresponding Riemannlan
p,2

curvature tensor at m is represented by its action on M(px2 by ([3], p. 180)

R(X,Y)Z xytz-yxtz-z(xty-ytx) ’2.2)

Similarly, for the non-compact dual G* the curvature tensor is just the negative
p,2

of this, and it will be sufficient to consider the compact case. Of course the metric

g can be replaced by any metric homothetic to it without affecting R.
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The tensor T of type (1,3) defined at m by

T(X,Y,Z) xytz (2.3)

is invariant by the isotropy group and so extends to a parallel vector field on

TXY and
Y

at m byGp,2(R), also denoted by T. We define linear endomorphisms TXy, T
X

TxyZ--T(X,Y,Z) YzffiT(Z,X,Y), TZfT(X,Z,Y) (2.4)

which are self-adjolnt.

at m, hence on G (R)
p,2

Then one easily verifies that T has the following properties

P1 T(T(X,Y,Z),U,V) T(X,T(U,Z,Y),V) T(X,Y,T(Z,U,V))

P2 < T(X,Y,Z),W > < T(Z,W,X),Y > <T(Y,X,W),Z >

P3 For each unit vector X

X I, ill. tr TXX=p, peZ+i. tr Txxffi2, li. tr Tx

Moreover it is known that dimG (R)=2p.
p,2

vectors X at m satisfying T(X,X,X)ffiX.

Particular use will be made of unit

Such vectors are characterised by the

following:

M satisfies t r xxtffil. Then xxtx=x if andLEMMA 2. I. Suppose Xffi(Xl ’X2 (px2)
only if X and X

2
are linearly dependent.

s
2

PROOF. From the equation xxtxffiX we easily get IIX1112 IIX2112 (l-co )) O,

where u is the angle between XI,x2, from which we have vffiO Conversely suppose

X2ffiXl, leR therefore (l+12)llXIII 2ffil from which we have xxtxffiX.

Now choose a geodesic Y through m with unit tangent vector field V such that

T(V,V,V)ffiV on . This relation holds if and only if it is satisfied at m, and

clearly such vectors exist at m. Then by (2.2) we have:

R(V,JV)V -JV (2.5)

so using Proposition I.I we have the following result.

PROPOSITION 2.2. Let mEG (R) and choose a normal nelghbourhood U of m as in
p,2

Proposition I.I. and let YcU be any geodesic ray from m with unit tangent vector

N satisfying T(Nm,Nm,Nm)--N Then the Weingaren map A has the following property
m m

AJN =f(N ).JNm, f(N R (2.6)
m m m

We now state our main result.
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THEOREM 2.3. Let M be a complete simply connected Kahler manifold of dimension

2p>2 with metric g and almost complex structure J. Let T be a parallel tensor field

of type (1,3) on M satisfying P1 trough P3" Suppose for each meM there exists a

normal nelghbourhood U of m such that for each geodesic sphere S in U centred at m and

for each unit normal Nm to S with T(Nm,Nm,Nm)=Nm the Weingarten map satisfies

(2.6). Then M is homothetic to either the Euclidean space

E
2p

G
p 2(R) or G* (R).

p,2

3. A CHARACTERISATION OF T ON M(px2
The proof of the Theorem depends largely on a characterisation of the structure

described earlier on the tangent space to G (R) at any point. For this purpose we
p,2

require the following result.

PROPOSITION 3.1. Let V be a real finite dimensional vector space with inner

product <, > and let T be a tensor of type (1,3) on V satisfying P1 through P3"
Suppose dlmV=2p > 2, then there is a linear isomorphism of V onto M(px2) of all real

px2 matrices considered as vector space and under identification T(X,Y,Z)=XytZ and

<X, YO=t rXXt

The proof of this proposition requires several lemmas. The first of these lemmas

provides a useful duality between TXy and T
XY

and is immediate from PI’P2’P3"
LEMMA 3.2. Define a tensor S on V by S(X,Y,Z)--T(Z,Y,X) and write

=TYX, sXY__Tyx X Y
SXy S--TX. Then PI’P2 are satisfied when T is replaced by S and

P3 is satisfied when TXX and TXX are replaced by SXX and S
XX

respectively provided

p and 2 are interchanged.

In what follows we remark that P1 and P2 may be used occasionally without

reference.
X

LEMMA 3.3. For each non-zero XEV the linear endomorphisms Txx,T
XX

and TX
are self-adjoint and T(X,X,X) #0.

PROOF. The self-adjoint properties are clear from PI" Also from P3(1) there

exist Y such that T(X,X,Y)#0. Therefore from PI and P2 we have:

0<<T(X,X,Y), T(X,X,Y) >--<T(X,X,T(X,X,Y)),Y>--< T(T(X,X,X),X,Y),Y>

Thus T(X,X,X) 40.

LEMMA 3.4. Suppose X,YeV are non-zero and T(X,X,Y)--k.Y. Then im Tyy is

contained in the -eigenspace of TXX. If T(X,X,X)=X then % is the only non-zero

eigenvalue of TXX.
PROOF. We have to prove that for any ZgV, Txx(T(Y,Y,Z))--%T(Y,Y,Z). In fact,

Txx(T(Y,Y, Z))=T(X,X,T(Y,Y, Z) )=T(T(X,X,Y) ,Y, Z)=%T(Y,Y, Z).
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Suppose now that there exist ,ZO such that TxxZ-Z then TXX( Z) Z, so ZimTxx

and from the first part of the lemma ZEk-eigenspace of TXX. Therefore

TxxZ--kZ, so AZ--Z and then =%.

From now on we use the following notation: Define D c V by XED if and only if

X--0 or rkrxx--min{rkTyy:YEV and Y0}. Then for each non-zero XD write Vx=imTxx.

Dually we define D’c V by replacing T ,T above by T
XX

T
YY

XX YY and writing

vX=Im T
XX

for XO. Finally, we write VX; VxOV
LEMMA 3.5. Let X and Y be non-zero vectors such that XD and YEVx. Then (i)

VxCD, (ii) Vx--Vy, (iii) T(X,X,X)--k IIXII2X, where k IIXII2rkTXX-2 and

k--max{/T(Z,Z,Z)- Z, lzll-l} conversely, any vector U satisfying this equation

belongs to D. (iv) Txx(VX) -0, where V
X

is the orthogonal complement of V
X in V.

PROOF. We may assume that IXII IYII I. As a consequence of Lemmas 3.3 and

3.4, TXX has exactly one nonzero eigenvalue, say possibly with mItipliclty > I.

Since T(X,X,Y)-- %Y then from the definiton of X and Lemma 3.4

imTyy A-eigenspace of TXX therefore rkTyy-dim im Tyy dlm(%-eigenspace of x)=rkTxx
but rkTxx is a minimum, thus rkTyy-rkTxx so YD and Tyy has a unique non-zero

eigenvalue and imTxx-imTyy which proves (i) and (ii). From the last equation we

have rkTxx-rkTyy-r suppose TXX has the eigenvalue and Tyy the eigenvalue,

then trxx- summation of eigenvalues --r.%-r., so u=% and therefore T(Y,Y,Y)- .Y.

Next, let X be the orthogonal projection of X onto the

k-eigenspace of TXX the TxxXI--kXI. Let X-XI+X2 such that X belongs to the

-eigenspace and X
2
to the 0-eigenspace. Then TxxX-TxxXI+TxxX2-kXI. Therefore

Xl0 because if Xl=0 then TxxX-0 which is impossible because we proved that

TxxX 0. Furthermore,

T(X,X,T(X,T(X,X,X),X1)) T(X,X,T(X,X,T(X,X,X)))-

12T(X,X,Xl) 13X

US II so x--x, and T(X,X,X) IX. Since rkTxx-2 and is a minimum the first

I’ 11 then rkTuu--rkTxx so UD as

required. Finally (iv) is immediate since TXX is self-adjolnt and Vx is the k-

eigenspace of TXX.
LEMMA 3.6. If YVx and U,WEV then T(Y,U,W)EVx.
PROOF. There exist ZV such that T(X,X,Z)=Y. Hence from

P2’ T(Y,U,W)=T(T(X,X,Z),U,W)=T(X,X,T(Z,U,W))eVx.
In the rest of this section let U be a unit vector in D. Then for any
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X,Y e patlcular,

T(X,Y,X)+T(Y,X,X)=2k<X,Y>X. These equations imply.
U X

LEMMA 3.7. For all X,YeVU ,TxY=2k<X,Y>X-kI,,X,,2Y. On the other hand we have

I
the following result for (V)

LEMMA 3.8. If XV and Ye(V
U

then Y=0.
X

is self adJoint it is sufficient to prove (T) 2 Y=0. LetPROOF. Since T
X

ZeV, then (TxX) 2Z--T(T)--T(T(X,Z ,X) )-- T(X,T(X,Z,X), X) --T(X,X,T(Z,X,X))=TxxTXXz--TXX

X)2Y, Z > < Y (T)2Z > 0 which proves theX)2 ZeV. Hence < (T
XTX, so (r

X
temma.

LEMMA 3.9. (i) For any non-zero vector XeVuU’ x=Vu=TK(Vx)UX X (ii) k=l, (iii)if
Y I.YeD is non zero then dim Vy=

U
and

U X XPROOF. From Lemma 3.5 (ii) and its dual =V
U Vu=Tx(VX) from Lemma 3.7,

U
this proves (i). From Lemmas 3.7 and 3.8 the non-zero eigenvalues of T

U
are k and -k

with mutiplicity and d-l, where d--dimVuU. Therefore k-k(d-l)=l or k(2-d)=l and due

to the fact that k > 0 and d is an integer we conclude that d=l, therefore k--I and

dimV=l. This proves (i i) and (iii) follows since the choice of unit vector UED is

arbitrary.
X

ThenLEMMA 3.10. Suppose X,Y are unit vectors in V
U

with Y orthogonal to VX.

Y Y
v) o(i) < Vy >--O, (ii) T(V Vy,

V
PROOF. Let VeV’ and WeV. Then from Lemma 3.6 and its dual <T(X,V,X),T(Y,W,Y) >

< T(W,Y,T(X,V,X)),Y > < T(W,T(V,X,Y) ,X) ,Y > 0 and (i) follows using Lemma 3.9

(i). Next for YeV, <T(X,Y,V),T(X,Y,V) > < T(Y,X,T(X,Y,V)),V > <
T(T(Y,X,X),Y,V),V > Now T(X,X,Y)=Y so from Lemma 3.8 T(Y,X,X)--T(T(X,X,Y),X,X)--

(v)2 Y--0. Hence T(X,Y,V)=0 and (ii) follows using (i).
U

LEMMA 3.11. V
U

admits a multiplication, with respect to which, it is isomprophic

to R.
U

PROOF. Define a bilinear operation on V
U by X.Y--T(X,U,Y). We show that

U
becomes a real associative division algebra and the lemma follows using FrobeniusV

U
Theorem. Clearly U is a unit vector because k--l. Also multiplication is associative

since (X.Y).Z=T(T(X,U,Y),U,Z)--T(X,U,T(Y,U,Z))--X.(Y.Z). Moreover any non-zero X has an

inverse IXII-2X and the proof is complete.

PROOF OF PROPOSITION 3.1. From Lemmas 3.9 and 3.10 together with their duals

V
u X

Vu(res p. is an orthogonal direct sum of subspaces of the form VX, XeV
U

(resp. XeVU) each of dimension m=l. Since k=l, we obtain using Le,,ma 3.5 and its

dual dim Vu=rkTuu--2 and dim vU=rkTUU=p, peZ+. For convenience of notation, write

U e-- eli. From Lemma 3.11 we may consider VU
U

as a I-dimensional vector space over R
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with vectors f, feR. Next we may choose sets of orthogonal unit vectors

{ell,el2}c V and {e l"’’’ee pl
cVe such that V= V I 2

and ve=vI V where
e Vl p

s els l=veilVI=V e
,V

Is i ell
for s=l,2; i=l,...,p and the direct sums are orthogonal. Now define

eis=T(eil,e,els) for i=l,...,p; s=l,2 noting consistency when i--I or cl.

e
iel s

0 V c D and we write VeielseV ei s

s
hasFrom Lemma 3.9 (ill) each V

i

Then

dimension =1.

iCj

Also we note from Lemma 3.1 (i i) and its dual form that for

T(V ej [0}T(els’e 18’V1 I’ ell

and

and it follows easily that V
i
and Vj are orthogonal if s8 or iJ.

V is the orthogonal direct sum of the subspaces Vi, lffil,...,p;

feR we define elsf=T(eil, el, ele). Then for f,g, heR,

Since dlmVf2p,

Next for any

T(eiaf’ejsg’ekTh)ffiT(T(eil’ef’e la) ,ejsg,ekh)ffiT(eil,T(ejsg,e Is ’ef)’

ekyh)ffiT(eil’T(T(ejl’eg’elS) ,e la,ef) ,ekyh)fT(eil,T(ejl ,eg,

T(els,e Is’ef)) ,ekyh)f6sT(eil,T(ejl ,eg,ef) ,ekyh)f6ssT(eil,ef,

T(eg,ej ’ekyh))=6ssT(eil’ef’T(eg’ejl’T(ekl ,eh,ely)))ffi

=5s8T(eil’ef’T(T(eg’ejl ,ekl) ,eh,ely))ffisaBSjkT(eil,ef,T(eg,eh,elY))ffi

ffi6s86jkT(eil’T(eh’eg’ef) ,ely). Now,

ehgfffiT(T(eh,e,eg) ,e,ef)fT(eh,T(e,eg,e) ,ef)ffiT(eh,eg,e f)

hence

T(eisf’ejsg’ekyh)=T(eil’ehgf’ely)6s86jkffifgh6aB6jkeiy (3.1)

s
R it follows that V can be considered as a vectorSince each Vi=T(eil,Vl,els)=els

space over R with basis {els} i=l,...,p;a=l,2. Then by considering M(px2 as a

vector space over R we have an R-linear isomorphism:

#: V M(px2); Z e (x
i ,a isxi
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From (3.1)

T(eixia,ejSyjB,ekYZky)--xlaYjaZj .e

Thus, if elements of V are represented by their corresponding matrices then T(X,Y,Z)

coresponds to xytz. Finally, using Lemma 3.|I,

< elaxi,ej8xjB >=< T(eil,exi,ela),ejBxjB >=< T(ela,ejBxjB,eil),

,exie >=< exie,exie > xie.xie=tr XX
t

and the proof is complete

REMARK 3.12. Proposition 3.1 has a dual form obtained essentially by exchanging

p,2 and replacing T by S as defined in Lemma 3.2. Thus write each basic vector

ei as i and write any XEV as Eixai Then an R-linear isomorphism

(x ); clearly =to where t:M (2p)M(2xp) is:V M(2xp is defined by eaixai ai

the transpose. If elements of V are represented by their corresponding matrices in

M(2xp then S(X,Y,Z)=T(Z,Y,X) corresponds to xytz and < eeixel,eBjxBj > tr XX t.

4. PROOF OF THE MAIN THEOREM.

Before proving the Theorem we require some further lemmas. In what follows we

denote D{XeV/T(X,X,X)-- IIXII 2 X} and write as ei the matrix in M(px2 with in

row i column a and zeros elsewhere.

LEMMA 4.1. Let XeV be non-zero. Then (i) XeD if and only if (X) has rank

one. (ii) IXI I=I and X,YeD then X+YeD if and only if YeVxUVX.
PROOF. (i) Elementary considerations show that if AeM(px2 is non-zero then

AAtAAtA--(tr A, if and only if A has rank one. Analogously we conclude (ii).

LEMMA 4.2. Let R be a tensor of type (1,3) on V with the symmetry properties of a

Riemanian curvature tensor and satisfying <R(JX,JY)Z,W >-<R(X,Y)Z,W> on V. Suppose

for each XD and YeV orthogonal to X, <R(X,JX)X,JY>=O. Then the sectional curvature

determined by R is constant on D.

PROOF. Write K(X) for the holomorphic sectional curvature for any unit vector

XeV. Also write R(X,Y,Z,W)--<R(Z,W)Y,X>. Now choose a unit vector XeD. Let YeV
X

be

a unit vector orthogonal to X. Then X+Y, X-YeD, so by hypothesis <R(X+Y,J(X+Y)))

(X+Y), J(X-Y)> 0 and it follows easy that K(X)--K(Y). If XeD then dim V =2 and
X

there exist only one sectional curvature for {X,JX} and the case is trlvial. If

XeD then dim vX=p. We prove that in this case we also have K(X)=K(Y) for all Y. Let

Y be perpedicular to X and Y belongs to VX. If p=2 then the case is obvious and we

have K(X)=K(Y), if p > 2 then given X and any ZeV
X

we have for any U perpedicular to

X and Z,K(U)=K(Z) and K(U)--K(X), therefore K(X)=K(Z)--K(U). Thus K is constant on D,

as required.
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LEMMA 4.3. Define R as in Lemma 4.2 and suppose R(X,JX)X--0 and R(X,Y)T=O for all

X, YeD. Then R--0 on V.

PROOF. We first show for any UgD, R(vU,vU)vU=0. This depends only on the first

of the above two conditions on R. Thus, by linearlslng the equation R(X,JX)X=0 we

obtain, for all

X,YevU ,R(X+Y, JX+JY) (X+Y) =0.

Therefore

R(X,JX)Y+2R(X,JY)X 0

Then (4.1) together with the Bianchi’s identity applied to R(X,JX)Y, gives R(X,Y)X

0. On replacing X, in this last equation, by X+Z it follows tht R(X,Y)Z--O for all

X,Y, ZgV
U

as required. Clearly the same property holds with V
U

replacing VU. The

second condition on R implies that, for any unit UD and X,YEV

R(X,Y)U--R(X,Y)(T(U,U,U))--T(R(X,Y)U,U,U)+T(U,R(X,Y)U,U)+T(U,U,R(X,Y)U)
Then from Lemma 3.6 and its dual together with Lemma 3.8 we obtain R(X,Y) g Vu+VU.
Next choosee the basis {eic}, i=l,...,p; :1,2 for V. We denote the subspace

Ve (resp. V i) as Vi(res p. V). We must show that R acting on basis vectors is

zero. Since the above properties of R still apply when U is replaced by any basis

vector, we know that for i--l,...,p; --1,2 and X,YEV,

R(Vi,vi)Vi=R(ve,ve)v= 0, and (4.2)

R(X,Y)eIEV i+Va (4.3)

We now prove that each R(VI,V)VI--O. Clearly, ej+ejBE Vela+ so by (4.2) and (4.3)

0-R (ei+e i8
,ej+ej 8) (e ia+e is)=R (e

i
,eja)e is+R (e

18
,e

j 8
)e

i=

V =. It follows thatBut (4.3) implies that R(ela,ej=)eiBV8 and R(eis,ej 8)ei

R(e
i

,e )e iS=0 i J=l 8-1 2
j

,...p; (4.4)

Also if iCj and #Y then (4.3) implies that for all X,YEV

<R(eia,ejy)X,Y > < R(Y,X)ejy,ei > =0

Thus for ij and #Y

R(ei,ejy) 0 (4.5)

Then as a consequence of (4.4) and (4.5) each R(Vi,V)Vi=0. Since equations (4.2)

and (4.3) are symmetric in V
i
and V the same proof applies to give

R(V,V)Va=0 for =1,2. The Bianchi identity then shows that
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R(Vi,Vl)V=R(Va,V )V=0, and these two equations together with (4.5) prove that Rffi0 on

V as required.

PROOF OF THEOREM 2.3. Under the conditions of the Theorem, suppose the unit

vector V gM satisfies T(V ,Vm,V )ffiV and let V be the unit tangent vector field to
m m m m

the geodesic Y from m with initial tangent vector V Then T(V,V,V) V along Y and
m

from equation (2.5) AJV=f(V)JV for some smooth function f on Y-{m}. It follows

using equation (1.4) that if Y is a parallel vector field along y normal to V then

<R(V,JV)V,JY>=O on Y-{m} and hence at m by continuity. Now consider M as the

vector space V in Proposition 3.1. The tensor T at m satisfies PI’P2’P3 and, with

the notation of Lemma 4.2 for each XgD and Y orthogonal to X, <R(X,JX)X, JY >
0. Hence from Lemma 4.2, K is a constant, say c on D, and for all unit vectors

XED, R(X,JX)X =-cJX. Next, it is clear from Proposition 3.1 and equation (2.2)

that a second curvature R is defined on Mm by

RI(X,Y)Z-- T(X,Y,Z) + T(Z,Y,X)-T(Y,X,Z)-T(Z,X,Y) (4.6)

and R also satisfies the conditions of Lemma 4.2 with respect to the given almost

complex structure J on M restricted to M Moreover RI(X,JX)X -JX for any unit
m

vector XD. The tensor ffiR-cR then satisfies the conditions of Lemma 4.2 and

Lemma 4.3 note that R(X,Y)T=O since T is a parallel tensor field on M and RI(X,Y)Tffi0
is the corresponding algebraic property of any point of G (R). Thus by Lemma 4 3

p,2

R=cR (4.7)

on M But m is arbitrary so, defining R on M by (4.6) we see that on M

RffR (4.8)

for some function f, the Ricci tensor corresponding to R is a multiple of the metric

g, as can be seen either by direct computation ([6]) or by noting that G (JR) is an
p,2

Eistein space. Hence from (4.8), (M,g) is an Eistein space and f=c on M. Then

VRlffi0 implies VRffiO so (M,g) is locally symmetric space.

Suppose c=0, then (M,g) is flat. Conversely on any flat Kahler manifold M we can

define T by

T(E,Y, Z)fg(X,Y)Z+g(X,JY)Z. (4.9)

With M complete and simply connected as in the theorem, M is isometric to Euclidean

space E2p. Next, suppose c > 0 and define g’ and T’ on (M,g) by g’=cg and T’

c.T. Then the conditions of the theorem are satisfied with g’ ,T’ replacing ,T;

further, since the curvature tensor R is unchanged by the homothety, we have from

(4.6) and (4.7)
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R(X,Y) Z--T’ (X,Y, Z)+T’ (Z,Y,X)-T’ (Y, X, Z)-T’ (Z,X,Y) (4.10)

on (M,g’). We know that (M,g’) is a locally symmetric space and it is clear from

Proposition 3.1 and equations (2.1), (2.2) and (4.10) that the tangent spaces at any

two points of G (R) and M are related by a linear isomorphism which preserves inner
p,2

products and the curvature tensors. Hence G 2(R) and M are locally isometric ([5],
P,

p. 265) and this extends to a global Isometry when M is complete and simply connected

since G (R) has these properties. Finally if c < 0 we clearly obtain the same
p,2

result for the non compact dual of G (R) and the proof is complete.p,2
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