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ABSTRACT. In this Der, we show the existence of solutions of functional equations

fx Sx0 Tx and x fx&Sx 0Tx under certain contraction and asymptotic regularity

conditions, where f, S and T are single-valued and multl-valued mappings on a metric

space, respectively. We also observe that MukherJee’s fixed point theorem for a

single-valued mapping commuting with a multl-valued mapping admits of a counter-

example and suggest some modifications. While doing so, we also answer an open

question raised in [I] and [2]. Moreover, our results extend and unify a multitude of

fixed point theorems for multi-valued mappings.
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I. INTRODUCTION.

The study of fixed points of multl-valued mappings using the Hausdorff metric was

initiated by Markin [3] and Nadler [4]. Subsequently, a number of generalizations of

the multl-valued contraction principle (which states that a multi-valued contraction

mapping on a complete metric space having values in the set of all closed and bounded

subsets of the metric space possesses a fixed point, [4]) were obtained, among others,

by Ciric [5], Khan [6], Kubiak [7], Reich [8], Smithson [9] and .egrzyk [I0]. However,

hybrid contractions, viz., contractive conditions involving :n,Iti-valued and single-
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slngle-valued mappings have recently been studied by Mukherjee [II], Naimpally et al.

[12], Rhoades et al. [I] and Singh et al [2]. In this paper, we consider a very

general type of condition involving two multi-valued mappings and a slngle-valued

mapping and establish coincidence and fixed point theorems (cf. Theorems 2.1-2.3)

which improve, extend and unify some coincidence theorems and a multitude of known

fixed point theorems. At the end, we have compared a few contractive conditions.

Let, (X,d) be a metric space. We shall use the following notation and

definitions:

and

CL(X) {A: A is a nonempty closed subset of X

CB(X) {A: A is a nonempty closed and bounded subset of X

C(X) {A: A is a nonempty compact subset of X }.

For A, B . CL(X) and > 0

N( e ,A) xX: d(x, a < e for some aA},

EA,B { > O: A N(e,B) and B___ N(e,A)}

and

H(A,B)

inf EA,B, if EA, B ,

+ % if EA, B .
H is called the generalized Hausdorff distance function for CL(K) induced by d, and H

defined on CB(X) is said to be the Hausdorff metric induced by d. D(x,A) will denote

the ordinary distance between x X and a nonempty subset A of X. Let f be a single-

valued mapping from X to itself and S, T multl-valued mappings from X to the nonempty

subsets of X.

DEFINITION i.I. If, for Xo X, there exists a sequence {xn} in X such that

fx
n SXn_ if n is odd and fXn TXn_l if n is even, then 0f(xo) {fXn: n=l ,2,

Further, 0f(xo) is called a regular orbitis said to be the orbit for (S T;f) at x

for (S,T;f) if

d(fxn, fXn+I)

H(SXn_ Txn), if n is odd,

H(TXn_ Sxn), if n is even.

DEFINITION 1.2. If, for x X, there exists a sequence {x in X such that everyo n
Cauchy sequence of the form 0f(xo) converges in X, then X is called (S,T;f)-orbitally
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complete with respect to x or simply (S ,T; f ,x )-orbltally complete.
O O

If f Is the identity mapping on X then 0f(x is denoted by 0(x )and
O O

(S,T;f,x)-orbital completeness by (S ,T; x )-orbital completeness.
O O

DEFINITION 1.3. A pair (S,T) is sald to be asymptotlcallv .-,nlar at x ff X if
O

for any sequence [Xn in X and each sequence {yn in X such that ’J,: ’’-| J TXn-l’
lim d(Yn,Yn+ I) O.
n

We remark the Definitions I.I 1.3 with S T reduce respectively to Definitions

4, 6 and 7 of Rhoades et al. [1]. A definition of a regular orbit for a multi-valued

mapping seems to appear first in [9]. We further remark that orbital completeness

need not imply the completeness of the space. Evidently every complete space is

orbitally complete.

DEFINITION 1.4. f and S are said to commute at a point X if Ex c_ Sfx

(f and S are said to commute on X [13] if fSxc Sfx for every point x X).

In [14], Sessa introduced the concept of weak commutativity for single-valued

mappings on a metric space. Now, we extend this concept to the setting of a single-

v.alued mapping and a multl-valued mapping on a metric space as follows:

DEFINITION 1.5. f and S are said to be commute weakly at z X if

H(fSz, Sfz) D(fz, Sz). f and S are said to commute weakly on X if they commute

weakly at every point in X.

Note that commutatlvlty implies weak commutativity, but the converse need not be

true even in the case of single-valued mappings as shown in [14].

EXAMPLE 1.6. Let X {I, 2, 3, 4}. Define a metric d on X and mappings f, S as

follows:

d(1,2) d(3,4) 2, d(l,3) d(2,4) 1,

d(1,4) d(2,3) 3/2;

S1 $3 {4}, $2 S4 {3};

fl f2 f3 2, f4 I, respectively.

We have Sfl {3} and fSl {I} and so f and S do not commute at x I. But f and S

commute weakly at x since H(Sfl, fSl) D(fl, SI) I.

/
Let F be the family of mappings # from the set R of nonnegatlve real numbers to

itself such that each # is upper-semlcontlnuous and nondecreasing.

The following theorem appears in [II]:

THEOREM 1.7. Let (X,d) be a complete metric space, f a continuous mapping from X

into itself and T a multi-valued mapping from X into CL(X) such that f and T

commute. Also suppose given x X, there is a point x & X such that fx 6 Tx
O O

Then, if for all x, y E X and for some (0,I),

H(Tx, Ty) d( fx, fy), 1.1
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there is a point z X such that z fz Tz; that is, z is a common fixed point of f

and T. The followi example shows that this theorem is false.

EXAMPLE 1.8. [12]. Let X [0,), Tx-- [l+x,) and fx 2x for x X. Clearly

(I.I) and the other hypotheses hold with [I/2,1). However, Theorem 1.7 is true tn

as much as f and T have a coincidence point; that is, fz Tz for some z G X. Note

that T:X CB(X) satisfying (I.I) with f an identity mapping on X is a multl-valued

contraction. Theorem 1.7 is true when f is the identity mapping on X.

The following thereom is an interesting result for the existence of coincidence

points of hybrid contractions, that is, contractive conditions involving slngle-valued

and multi-valued mappings.

THEOREM 1.9. [I]. Let be a multl-valued mapping from a metric space X into

CL(X). If there exists a mapping f from X into itself such that T(X)c_f(X), for each

x, y X and F,

H(rx,ry) (max(D(fx,Tx),D(fy,Ty),D(fx,Ty),D(fy,Tx),d(fx, fy))), (1.2)

(t) < qt for each t > 0 and for some 0 < q < I, (1.3)

there exists a point x X such that T Is asymptotically regular
O

at Xo and f(X) is (T;f,xo)-orbltally complete, (1.4)

then f and T have a coincidence point.

If f is not the identity mapping, then commmtlng mappings f and T satisfying the

hypotheses of Theorems 1.7 and 1.9 need not have a common fixed point. The following

question is raised in [I] and [2]: What additional conditions will guarantee the

existence of a common fixed point for f and T?

We remark that (I.I) implies (1.2) and Theorem 1.9 gives a solution of the

coincidence point equation fx Tx for x X.

In this paper, we investigate different sets of conditions under which the fixed

point equation x fx E Sx Tx for x X possesses a solution.

2. THE MAIN THEOREMS.

Now, we are ready to give our main theorems:

THEOREM 2.1. Let S and T be multi-valued mappings from a metric space X Into

CL(X). If there exists a mapping f from X into itself such that S(X) U T(X)c f(X),

for each x, y X and $ F,

H(Sx,Ty) $ (max(D(fx,Sx),D(fy,Ty),D(fx,Ty),D(fy,Sx),d(fx, fy))), (2.1)

$() qt for each t > 0 and for some fixed q (0,I), (2.2)

there exists a point x X such that the pair (S,T) is
O

asymptotically regular at Xo, (2.3)

and f(X) is (S,T;f,Xo)-orbltally complete, (2.4)

then f,S and T have a cocence point. Further, if z is a coincidence point of

f,S,T and fz is a flxe| point of f, then (a) fz s also a fixed point of S (resp. T)
provided f conautes weakly with S (resp. T) at z, and (b) fz is a common fixed point

of S and T provided f commutes weakly with each of S and T at z.
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PROOF. Let be a point in X satisfying (2.3). Since S(X)c_f(X), we can find a
O

point x X such thnt fx S Noting that T(X) is also a subset of f(X), we, for a
o

suitable point x
2 -X, can choose a point fx

2
Tx such that

-i/
d(fx fx2) q 2H(Sx Txo’

-1/2We remark that such a choice i possible by the definition of 8 since q

In general, we can choose a sequence {x in X such that fX2n+ : Sx2nn

fX2n+2 TX2n+l, fX2n+3 t SX2n+2 and

> 1.

-1/2
d(fx2n+l,fX2n+2) q H(SX2n,TX2n+l),

-I/2
d(fx2n+2 fX2n+3) q H(TX2n+1 ’SX2n+2)"

By (2.3), lim d(fXn, fXn+l 0

Now, we assert that [ix is a Cauchy sequence in f(X). Suppose not. Then one of the
n

subsequences [fX2n} or {fX2n_l} is not a Cauchy sequence. Without loss of generality,

we may assume that {fX2n} is not a Cauchy sequence. Then there exists a positive

number such that, for each positive integer 2k, there exist integers 2n(k) and 2re(k)

such that

2k 2n(k) < 2m(k), (2.5)

d(fx2n(k),fx2m(k)) ) e. (2.6)

Let dl, j d(fxl, fxj) and d
i d(fxi, fxi+l). Then for each integer 2k,

e d2n(k),2m(k d2n(k),2m(k)_2
+ d2m(k)_2

+ d2m(k)_ I. (2.7)

For each integer 2k, let 2re(k) denote the smallest integer satisfying

(2.5) and (2.6). So d2n(k),2re(k)_2 < ’ and from (2.7),

I im d .
k

2n(k),2m(k)

Using the triangle inequality,

and
[d2n(k),2m(k)-I d2n(k),2m(k) d2m(k)_

Id2n(k)+l,Zm(k)_l- d2n(k),2m(k) d2n(k + d2m(k)_ I-

These relations, in view of (2.3) and (2.8), yield

(2.8)
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llm d2n(k) 2m(k)-I llm dk k 2n(k)+l,2m(k)-I e.

So by (2.1),

d2n(k),2m(k) dZn(k) + d2n(k)+l,2m(k)
-1/2

d2n(k) + q H(SX2n(k),Tx2m(k)_ I)

-I/2
d2n(k + q (max(D(fx2 ,Sx2n(k) n(k)

D(fx2m(k)- ’TX2m(k)- ’D(fxzn(k ,TX2m(k)_ ),

D(fx2m(k)-l’SX2n(k))’ d2n(k),Zm(k)-I ))

d2n(k + q- 1/2 O(max(dZn(k ,d2m(k)_ ,d2n(k ,2re(k)

d2m(k)-I ,2 n(k)+l, d2n(k) ,2m(k)-I )"

Using the upper-semlcontlnulty of @ and letting k , this yields

112 112
q (e) q qe < e,

I/2
since e > 0 and q < Io This contradicts the choice of e, and so the

subsequence {fX2n} is a Cauchy sequence. Consequently, {fXn is a Cauchy sequence

and, by (2.4), {ix has a limit in f(X). Call it u. Hence there is at least one
n

point z in X such that u fz. By (2.1),

D(fz,Sz) d(fz,fX2n+2 + D(fx2n+2,Sz)
d(fz,FX2n+2) + H(Sz,Tx2n+l)

6 d(fz,fX2n+2) + O(max(D(fz,Sz),D(fx2n+l,TX2n+l),

D( f z ,TX2n+l ,D (fX2n+l ,Sz) ,d( f z, fX2n+l

d(fz,fX2n+2) + #(max(D(fz,Sz),d(fx2n+l,fX2n+2)

d(fz,fX2n+2),d(fx2n+l,fz) + D(fz,Sz),

d( f z, fX2n+l ).
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Letting n , this inequality yields

D(fz,Sz) #(max(D(fz,Sz),0,0,D(fz,Sz),0)).

If fz Sz, then D(fz,Sz) > 0 and the above inequality implies

D(fz,Sz) #(D(fz,Sz)) < D(fz,Sz),

which is a contradiction. Hence fz Sz, since Sz is a closed subset of X.

Similarly, fz 6 Tz. Thus z is a coincidence point of f, S and T. If we assume that u

fz is a fixed point of f, then u fu ffz fSz. If f and S commute weakly at

z X, then fSz Sfz since fz Sz. Therefore, we have u Su. Similarly, if f

commutes weakly with T at z, then u Tu. This completes the proof.

Since (1.3) implies (2.2), Theorem 2.1 with S T improves slightly Theorem

1.9. Replacing the condition S(X) U T(X) c_ f(X) of Theorem 2.1 by the orbital

regularity, clearly we have the following:

THEOREM 2.2. Let S and T be multi-valued mappings from a metric space X into

CL(X). If there exists a mapping f and X into itself such that (2.1) and

(t) < t for each t > 0 and some F, (2.9)

for a point x 6 X, there exists a sequence {x in X such that the
o n

orbit 0f(x is regular, the pair (S,T) is asymptotically regular at x and
o o

f(x) is (S,T;f,x)-orbitally complete, (2.4)
o

then f, S and T have a coincidence point. Further, if the limit of 0f(xo) is a fixed

point of f, then the conclusions (a) and (b) in Theorem 2.1 are also true.

We remark that Theorem 2.2 with S T is Theorem 2 in [I]. It is well-known that

if P is a multi-valued mapping from X into C(X), then for every YI’Y2 E X and

Zl PYI’ there exists a point z
2 PY2 such that

d(Zl,Z2) H(Py l,Py2 )-

This suggests that if S and T are multi-valued mappings from X into C(X), then the

orbital regularity condition in Theorem 2.2 can be dropped. Indeed, we have the

following:

THEOREM 2.3. Let S and T be multl-valued mappings from a metric space X into

C(X). If there exists a mapping f from X into itself such that S(X) U T(X) c_ f(X),

(2.I), (2.9), (2.3) and (2.4), then f, S and T have a coincidence point. Further, if

the limit of 0f(Xo is a fixed point of f, then the conclusions (a) and (b) in Theorem

2.1 are also true.
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If, in (2.[), each of the terms D(fx,Ty) and D(fy,Sx) is replaced by I/2 (D(fx,Ty)

+ D(fy,Sx)), then the condition of asymptotic regularity of the pair (S,T) can be

dropped from Theorems 2.1-2.3. We emphasize that, without the assumption "fz is a

fixed point of f" in Theorems 2.1-2.3, f, S and T need not have a common fixed point,

even if the mappings are continuous, commuting on X and have fixed points. We are

indebted tc R.E. Smithson for the following example, which the first author received in

a personal communication, though in a different context.

EXAMPLE 2.4. Let X [0,1] and Sx Tx {0,I }, fx x for all x X. Since

S(x) {0, I} c_ f(X) X, H(Sx,Sy) 0 for all x, y X, f(Sx) {0, S(fx) and

f0 SI, fl 0 SO, all the hypotheses of Theorems 2.1-2.3 are satisfied except

that none of the coincidence values, viz., f0 or fl, is a fixed point of f.

Evidently, f and S are continuous, and the only fixed point of f is I/2 which is not a

fixed point of S.

In Theorem 2. taking f the identity mapping on X and defining

$(t) qt, 0 < q < I, we have the following:

COROLLARY 2.5. Let S and T be multl-valued mappings from a metric space X into

CL(X). If there exists a number q &(0,1) such thatjfor each x,y X,

H(Sx,Ty) ( q max(d(x,y),D(x,Sx),D(y,Ty),D(x,Ty),D(y,Sx)), (2.10)

there exists a point x X such that the pair (S,T) is
o

asymptotically regular at x and (2.11)
o

X is (S,T;x)-orbltally complete, (2.12)
o

then S and T have a common fixed point.

Now, consider the following conditions:

H(Sx,Ty) ( q max(d(x,y),D(x,Sx),D(y,Ty),D(y,Sx),I/2D(x,Ty))
q A(x,y), say, and (2.13)

H(Sx,Ty) q max(d(x,y),D(x,Sx),D(y,Ty),I/2(D(y,Sx) + D(x,Ty))). (2.14)

Note that (2.14) implies (2.|0), and (2.13) also implies (2.10). However, in

Corollary 2.5, if we replace (2.10) by (2.14), then (2.11) is not needed. In fact, we

have the following:

COROLLARY 2.6. Let S and T be multl-valued mappings from a metric space X into

CL(X). If there exists a number q (0,I) such that for each x, y X, (2.14) and

there exists a point x X such that (2.12), then S and T have a common fixed point.o

Corollary 2.6 includes a multitude of fixed point theorems for multl-valued

mappings such as Nadler’s multl-valued contraction principle [4], Reich’s fixed point

Theorem [8], Cirlc’s" generalized multl-valued contraction" Theorem 2 [5] and an

important result of Kublak [7, Corollary 1.2]. The following example shows that

corollary 2.6, if (2.14) is replaced by (2.13), will be false in general without some

additional condition such as (2.11) even if the space X is complete.

EXAMPLE 2.7. Let X- {I,2,3,4} and d be the metric on X given in Example .6.

Define mappings S, T as follows: S1 $3 {4} $2 $4 {3} T1 T4 {2} T2

T3 {I}, respectively. Note that S(X) {3,4} T(X) {1,2} and H(Sx,Ty) -d(Sx,Ty)

3/2. Then, since A(x,y) 2, H(Sx,Ty) q A(x,y), q [3/4, I], and the condition

(2.13) is satisfied but S and T have no coincidence even.
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We remark that the conditions (2.13) and (2.14) are independent. Indeed, Kublak

[7] rightly shows in his Example 2 (wherein d(2,3) 5/4 is misprinted as d(2,3)

4/5) that (2.14) need not imply (2.13), but wrongly remarks [7, Remark 3] that (2.13)

implies (2.14), for if (2.13) implies (2.14) then mappings of Example 2.7 will satisfy

(2.14) and Corollary 2.6 will guarantee a common fixed point of S and T which however

will contradict the conclusion of Example 2.7. Moreover, the following example shows

that the condition (2.13) need not imply (2.14).

EXAMPLE 2.8. Let X {a,b,c}. Define a metric d on X and mappings S, T as

follows: d(b,c) 2, d(a,c) 3, d(a,b) 4, Sa Sb Sc {a} and Ta Tc {a},
Tb {c}. So H(Sx,Ty) q A(x,Y), q [3/4, I], i.e., (2.13)is satisfied but (2.14)

is satisfied only for q ) I.

The following is the conclusion of the above comparisons.

THEOREM 2.9. (i) (2.13) implies (2.10), but not conversely; (li) (2.14) implies

(2.10), but not conversely; (ill) (2.13) and (2.14) are independent.
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