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ABSTRACT. The object of the paper If the study the roles of non-equillbrium entropy
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interpretatlon of the irreverslble approach to statlstlcal equlllbrlum of an isolated

system.
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I. INTRODUCTION.

The process of coarse-graining which is equivalent to the statistical averaging

of the mlcro-states over the various phase-cells plays a significant role in the study

of the macroscopic property of irreversibility from the reversibility of dynamical

equations of motion. The coarse-grainlng cannot be done arbitrarily and Giggs entropy

based on an arbitrary coarse-grained distribution does not always ensure the

relaxation to statlstlcal equilibrium. The object of the present paper is to

introduce a non-equillbrium entropy after Goldstein and Penrose [I] and to study the

importance of ergodicity and mixing in the statistical characterization of the

irreversible approach to statistical equilibrium of a classical isolated system.

2. DYNAMICAL SYSTEM AND OBSERVATIONAL STATES.

Let us consider a classical dynamical system whose dynamical state if

given by (R, Tt) where R is the phase-space consisting of all possible

phase-points and {Tt} is the family of tlme-evolutlon transformations (automorphisms)

defined for all real t generated by the dynamical equation of motion in phase-

space . Let m be the invarlant Llouvllle’s measure of phase-space and let 9 be any

other measure absolutely continuous to m. The probability density of

microstates p(to) is defined by a normalized density given by the Radon-Nikodym

derivative

dv
p(to) (to) (2.1)
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The tlme-evolutlon of the measure consists of the family of measures [t defined by

t(Tt ) (). (2.2)

This implies that for any set A

CA) (T A). (2.3)

The statistical structure (o r model) of the system by the probability-

space (, A, {v })where A is the o-algebra of subsets of including itself,
t

and, { is the family of probability measures on A.
t

To determine the observational states of the system at the initial time t 0 we

divide the time of observation into a countably infinite nmber of intervals of equal

length. Considering the length of each interval as the unit of the measurement of

time, the evolution of a subset A in the course of time is given by the series TtA
(t- ...-2,-1,0,1,2...). Let us define a partition P of phase-space into sets of

points that are indistinguishable by an observation made at time t 0. Two phase

points ml and m2 are then observatlonally equivalent if and only if the time

t ranlates T
t m2I and T

t
which lle, for every non-negatlve integer t in the same set

from the partition P. In other words, I and 2 rest lle in the same set from the

partition TtP. Let us define the o-algebra

=ffiv0 T_t 2.4)

as the smallest o-algebra which contains all the partitions P, T_IP, T_2P, Thus

every set in is the image under of some set in a; that is, to say, the a-algebra T

consists of image under T of all sets belonging to and includes (among others) all
t

the sets of t itself

T a (2.5)
t

The condition (2.5) is the condition of loss of observational information and

represents the asymmetry between past and future [I].

3. NOS-EQUILIBRIb ENTROPY: IRREVERSIBILITY AND MIXING.

The entropy (flne-gralned) of the classical dynamical system is defined by the

functional

S(t, A) ffi-K f pt() log pt() dm() (3.1)

-k f log (dvt/dm) dvtC).

The entropy S(v A) defined over the fine gralned-denslty Pt () contains fullt’
infromatlon about the system. For observation behavior of the system such detailed

information or description about the system is not necessary. For this a coarse-

graining of mlcrostates is necessary [2].

Let us consider the coarse-gralned density 0t
as the conditional expectation

of pt() with respect to the o-algebra t (which is the consltlonal expectation for the
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measure m/m()) [1].

t E(P()Ia) (3.2)

The entropy for the non-equilibrlum state is then defined by the coarse-gralned

entropy [I]

(t’ a) -K f %t log t am(m). 3.3)

Since the measure m used in defining the entropy is invariant, we have,

S (t’ 6) S (v, T_t. (3.4)

From (2.5), we have

T [ C , (t > 0). (3.5)
-t

As a consequence of (3.5), it is easy to prove that

S (v, T a) > (v,a) (3.6)
-t

or by (3.4), we have

S (t,a) > S (,a), (t > O) (3.7)

which proves the non-decreasing property of the entropy S (v ) with time; that is,t’
the H-theorem.

The equality in (3.7) corresponds to the stationary state of statistical

equilibrium of the system at the initial time t 0. Mathematically this holds for

the measure-preserving automorphism T
t

or (3.8)

Also the equality in (3.6), which is a consequence of the relation (3.5), holds for

the invariance relation:

T a . (3.9)
-t

Thus the inequality in (3.7) for statistical equilibrium at the initial time t 0

corresponds to the invariance of the o-algebra a under measure-preserving

automorphism T
t

that is, to the condition of ergodicity of the system. The equality

has also an important statistical significance. This, in fact corresponds to the

sufficiency of the o-algebra or to the sufficient partitioning of mitt.states (or
phase-space) into equivalent class of macrostates of the system [3.4]. The o-

algebra a is sufficient for the family of probability measures {vt if the conditional

expectation of any dynamical variable, say Hamlltonian X(m) given the o-algebra , that

is, if E {X()I} is the same for all {t [3]. The sufficiency of the o-

algebCa a implies the time-variance of the conditional probability

density E{p()la} which by definition is our coarse-grained density under
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consideration. The different non-null atoms of the sufficient o-algebra t represent

the different macrostates of statistical equilibria of the system at the initial time

t 0. This is a significant result. In an earlier paper [4], we have in fact shown

that the sufficiency of the o-algebra a for statistical equilibrium results from the

ergodicity of the system.

The non-decreasing property of the entropy S (v a) is however, not sufficient

to ensure the relaxation to equilibrium over the phase-space (energy-shell) . For

this a more broad assumption, namely the assumptlonof mixing of phases is necessary.

That the coarse-grained distribution generated by the o-algebra a

corresponds to the process of mixing results from the relatlon: Ttc D . For

measure-preservlng automorphlsm Tt, the sequence {Tta} forms a monotonically

increasing sequence of o-algebra and let where

a =tV=0 T
t

(3.10)

be its limit in the sense that Ttt + t(R). Note the t being the smallest n-algebra

which includes all sets belonging to Tt (t 0,1,2...) is, therefore, equal to the o-

algebra {@,l}, consisting of the null-set @ and the phase-space (ergodlc set) . Then

by Doob’s convergence theorem [5]

lim [A Tta} {AI} (3.11)

which is the condition of weak-mlxlng or relaxation to statistical equilibrium [6].

To express it in a more familiar form we note that the o-algebra to- {,} comprises

of all sets of measure 0 and m(). The mixing condition (3.11), then implies the

convergence of the coarse-grainded density Pt to the statistical equilibrium

(mlcrocanonical) density I/m():

llm Pt i/m() (3.12)

or

lira S (t,a) K log m() (3.13)

where the r.h.s is the thermodynamic equilibrium entropy. Thus, while the ergodiclty

corresponds to the states of statistical equilibria over the various phase-cells (non-

nullatoms of t at the initial time t 0, the mixing of phases ensures the limiting

case of relaxation of the system to statistical equilibrium over the whole of phase-

space of the system.

4. CONCLUSIONS.

The paper aims to stress the importance of the properties of ergodicity and

mixing in the coarse-gralned interpretation of the irreversible approach to

statistical equilibrium. The analysis is based on a measure of entropy defined for

the non-equillbrium states of an isolated system. The invarlance of the o-algebra t

under measure-preserving automorphism T
t
corresponds to the statistical equilibria

over the various phase-cells (including the whole phase-space R also) at the initial

time t 0. The sufflclency-a reduction principle of statistics, plays a significant

role in the statistical characterlzatlon of statistical equilibria at the initial

time. In the case of initial non-equilibrium distribution, it is, however, the

assumption of phase-mixlng which ensures the relaxation to statistical equilibrium

over the whole of phase-space [4].
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