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ABSTRACT. The object of the paper if the study the roles of non-equilibrium entropy
and mixing of phases in the statistical characterization of the coarse-grained
interpretation of the irreversible approach to statistical equilibrium of an isolated

system.
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1. INTRODUCTION.

The process of coarse-graining which is equivalent to the statistical averaging
of the micro-states over the various phase-cells plays a significant role in the study
of the macroscopic property of irreversibility from the reversibility of dynamical
equations of motion. The coarse-graining cannot be done arbitrarily and Giggs entropy
based on an arbitrary coarse-grained distribution does not always ensure the
relaxation to statistical equilibrium. The object of the present paper is to
introduce a nomequilibrium entropy after Goldstein and Penrose [l] and to study the
importance of ergodicity and mixing in the statistical characterization of the

irreversible approach to statistical equilibrium of a classical isolated system.

2. DYNAMICAL SYSTEM AND OBSERVATIONAL STATES.
Let us consider a classical dynamical system whose dynamical state if

given by (Q, Tt) where Q is the phase-space consisting of all possible

phase-points and {Tt} is the family of time-evolution transformations (automorphisms)
defined for all real t generated by the dynamical equation of motion in phase-
space Q. Let m be the invariant Liouville's measure of phase-space and let Vv be any
other measure absolutely continuous to m. The probability density of
microstates p(w) is defined by a normalized density given by the Radon-Nikodym

derivative

@ = 3 (W @.1)
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The time-evolution of the measure V consists of the family of measures [vt} defined by
(1]
V(T @) = V(w). (2.2)

This implies that for any set A € Q

Vt(A) = (T-t A). (2.3)
The statistical structure (or model) of the system by the probability-
space (4, A, {vt 1) where A 1is the o-algebra of subsets of 2 including 1itself,
and, {\’t} is the family of probability measures on A.

To determine the observational states of the system at the initial time t = 0 we
divide the time of observation into a countably infinite number of intervals of equal
length. Considering the length of each interval as the unit of the measurement of
time, the evolution of a subset A in the course of time is given by the series TtA
(t= +..-2,-1,0,1,2...). Let us define a partition P of phase-space into sets of
points that are indistinguishable by an observation made at time t = 0. Two phase
points o and w, are then observationally equivalent if and only 1if the time

2

from the partition P 1In other words, W and w, must lie in the same set from the

partition TCP' Let us define the o-algebra

translates Ttwl and Ttw which lie, for every non-negative integer t, in the same set

&=V T P (2.4)

as the smallest 0-algebra which contains all the partitions P, 'I‘_lP, T-ZP"" « Thus
every set Iin¢ 1is the image under of some set in &; that is, to say, the o-algebra T
consists of image under Tt of all sets belonging to and includes (among others) all
the sets of @ itself [1]:

Tt a>a (2.5)

The condition (2.5) 1is the condition of loss of observational information and

represents the asymmetry between past and future [1].

3. NON-EQUILIBRIUM ENTROPY: IRREVERSIBILITY AND MIXING.
The entropy (fine-grained) of the classical dynamical system is defined by the

functional
S(vt, A) = -K f pt(w) log pt(m) dm(w) 3.1)

= -k [ log (d\)t/dm) d\’t(w)'

The entropy S(v_, A) defined over the fine grained-density pt(w) contains full

s
infromation aboutt the systems. For observation behavior of the system such detailed
information or description about the system is not necessary. For this a coarse-
graining of microstates is necessary [2].

Let us consider the coarse-grained density T)t as the conditional expectation

of pt(w) with respect to the o-algebra a (which is the consitional expectation for the
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measure m/m()) [1].
b, = E(p(w)]a@) (3.2)

The entropy for the non-equilibrium state 1is then defined by the coarse-grained

entropy [1] :
S(v., @ = K j’pt log Bt dm(w). (3.3)

Since the measure m used in defining the entropy is invariant, we have,
S(Vt’ a =8 (v, T-ta)' (3.4)

From (2.5), we have

'1‘_t aca (t>0). (3.5)

As a consequence of (3.5), it is easy to prove that

s (v, T, 0 > (v, ) (3.6)

or by (3.4), we have :
S (Vt,a) > s (v,a), (¢ >0) 3.7)

which proves the nondecreasing property of the entropy ; (vt, a) with time; that is,
the H-theorem.

The equality in (3.7) corresponds to the stationary state of statistical
equilibrium of the system at the initial time t = O. Mathematically this holds for

the measure-preserving automorphism Tt:

or (3.8)
VI = .
Also the equality in (3.6), which is a consequence of the relation (3.5), holds for

the invariance relation:
T a=a, .
-t (3.9

Thus the inequality in (3.7) for statistical equilibrium at the initial time t = 0
corresponds to the 1invariance of the o-algebra a wunder measure-preserving
automorphism Tt that is, to the condition of ergodicity of the systems The equality

has also an important statistical significance. This, in fact corresponds to the
sufficiency of the o-algebra a or to the sufficient partitioning of microstates (or

phase-space) into equivalent class of macrostates of the system [3.4]. The o-
algebra a is sufficient for the family of probability measures {\Jt} if the conditional
expectation of any dynamical variable, say Hamiltonian X(w) given the o-algebra @, that
is, 1f E {X(w)|@} is the same for all V. € v} [3]. The sufficiency of the o-
algebra a implies the time-variance of the conditional probability
density E{p(w)'a} which by definition is our coarse-grained density under
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consideration. The different nonnull atoms of the sufficient o-algebra a represent
the different macrostates of statistical equilibria of the system at the initial time
t = 0. This is a significant result. In an earlier paper [4], we have in fact shown
that the sufficiency of the o-algebra a for statistical equilibrium results from the
ergodicity of the system. .

The non-decreasing property of the entropy S (\’t, a) is, however, not sufficient
to ensure the relaxation to equilibrium over the phase-space (energy-shell) Q. For
this a more broad assumption, namely the assumptionof mixing of phases is necessary.
That the coarse-grained distribution generated by the og-algebra ¢
corresponds to the process of mixing results from the relation: Tta S a. For
measure-preserving automorphi sm Tt’ the sequence {’I‘ta} forms a monotonically
increasing sequence of O-algebra and let a_ where

fd

a,=Y, T, (3.10)
be its 1limit in the sense that Tta t a,. Note the a, being the smallest J-algebra
which includes all sets belonging to Ttd. (t = 0,1,2...) is, therefore, equal to the 0-
algebra {¢,9}, consisting of the null-set ¢ and the phase-space (ergodic set) & Then
by Doob's convergence theorem [5]

lin v {a| T a} = via|q} (3.11)

t >
which 1is the condition of weak-mixing or relaxation to statistical equilibrium [6].

To express it in a more familiar form we note that the o-algebra a_ = {¢,R} comprises
of all sets of measure 0 and m(R). The mixing condition (3.11), then implies the
convergence of the coarse-grainded density Bt to the statistical equilibrium

(microcanonical) density 1/m(Q):

lim Bt = 1/m(8) (3.12)
c-}ﬁ

or .
lim S (vt,a) = K log m(Q) (3.13)
tw

where the r.h.s is the thermodynamic equilibrium entropy. Thus, while the ergodicity
corresponds to the states of statistical equilibria over the various phase-cells (non-
nullatoms of @ ) at the initial time t = 0, the mixing of phases ensures the limiting
case of relaxation of the system to statistical equilibrium over the whole of phase-
space { of the system.

4, CONCLUSIONS.

The paper aims to stress the importance of the properties of ergodicity and
mixing 1in the coarse-grained interpretation of the 1irreversible approach to
statistical equilibrium. The analysis is based on a measure of entropy defined for
the non-equilibrium states of an isolated system. The invariance of the o-algebra a
under measure-preserving automorphism Tc corresponds to the statistical equilibria
over the various phase-cells (including the whole phase-space 2 also) at the initial
time t = O. The sufficiency-a reduction principle of statistics, plays a significant
role in the statistical characterization of statistical equilibria at the initial
time. In the case of initial non-equilibrium distribution, it 1is, however, the
assumption of phase-mixing which ensures the relaxation to statistical equilibrium

over the whole of phase-space [4].
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