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ABSTRACT. We discuss the number of solutions of some nonlinear integral equations

arising in the theories of radiative transfer, neutron transport and in the kinetic

theory of gases.
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I. INTRODUCTION. In the theories of radiative transfer [I] [2] and neutron

transport [3], [4] an important role is played by nonlinear integral equations of the

form

(t)H(t)H(x) + xH(x)/ { dt. (I.I)

The known function is assumed to be nonegative, bounded, and measurable on

[0,I], and a positive, continuous solution H of (I.I) is sought.

Chandrasekhar’s treatment of (I.I) can be found in [2]. The first proof however

of the existence of a solution of (I.I) was given by M. Crum, who considered the

equation in the complex plane [5]. Crum also showed that if f (t)dt I/2 then

(I.I) has at most two solutions which are bounded in [0,I] and in case

0 (t)dt =I/2 there is only one such solution. C. Fox [6] solved simpler equations

in order to prove existence of solutions of (I.I). But the solution of Fox’s equation

are not necessarily solutions of (I.I)[I]. C. Stuart [7] gave a nonconstructive

existence proof for (I.I) using the Leray-Schauder degree theory but did not discuss

the number or location of solutions. B. Cahlon and M. Eskin [3] used a theorem of

Darbo for a set contraction map to prove a nonconstructive existence theorem for

(1.1).

Finally, C. Kelley [8] had solved some interesting generalizations of (I.I) using

the solutions of finite rank approximations of solutions of (I.I).
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Here we consider the generalized equation:

H(x) + xH(x)o k(x,t)(t)H(t)dt. (1.2)

The known kernal function k(x,t) is a measurable function on [0,I] x [0,I] satisfying

(a) 0 < k(x,t) < for all x, t [0,I],

and

(b) k(x,t) + k(t,x) for all x, t

We show that whenever (t)dt I/2 a minimal solution H can be found using a

specific iteration.

Flnally, under the same assumptlon, we provide a way of constructing new

nonmlnlmal solutions H of (I.I) in terms of the minimal solution.

2. BASIC RESULTS.

We denote by C[0,1] the Banach space of all real continuous functions on [0,I]

with the maximum norm

u max u(t) I"
Otl

We now llst the following well-known theorem whose proof can be found in

[2, pp. 106-107].

THEOREM I. If H is a solution of (1.2), then either

or

A necessa condition that (Io2) has a solution is tt

A function H e C[0,1] satisfies the equation

If and only if H satisfies (1.2) and (2.1).

Chandrasekr in [2], after proving tt a solution H of (I.I) satisfies either

(2.1) or (2.2), clal tt, in fact, H st satisfy (2.1). is claim is not true

because as we sh, there always exists a solution H satisfying (2.1), but In ny

cases there exists a second solution H satisfying (2.2) and not (2.1).

t be the natural partial ordering on C[O,I], tt is, if

PI’ P2 C[0,1], then pl P2 if Pl(X) (P2(X) for all x [0,I] and define the

follong:

d- tz- zS ,(t)dtY

the operator

D {p C[0,1llp(x) d, x [0,11 },

R:D C[0,1] by

R(p(x) p(x) f k(x,t)(t)p(t)dt, p D+

and for d > 0, define the operator F D C[0,1] by
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F(p(x)) d + /0 k(t’x)(t)(p(t))-Idt’ p D.

It is routine to verify that R is isotone, that is if Pl P2 then R(Pl) R(P2)
and F is antltone, that is if Pl P2 then F(P2) F(Pl).

Finally, denote by (respectively, d) the function with constant value

(respectively, d).

We can now prove the proposition:

PROPOSITION. Asstne that the kernel function k(x,t) is as in the introduction and

satisfies the condition

 Ix- ,I
and some b > 0. Then the sequence Rn(l), n I, 2, is equlcontinuous.

PROOF. Let H be a solution satisfying (1.2) and (2.1) and

A {p C[0,1]/I p H}.

Define Q A C[O,I] by

Q(p(x)) /0 k(x,t)(t)p(t)dt, x [0,11, p A.

Let > 0 then there exists a, 0 < a < I, such that

a
(t)H(t)dt < and @(t)A(t)dt > 0. Then for x, y [0,I],

< + =

se A) is

equicontinuous.

Let p A and x [0,1], then

< (t)HCt)dt 1- d 1.

Therefore there exists c, 0 < c < I, such that Q(p(x)) < c for all p A and

x [o,].

For any
0 > 0, there exists 60 > 0 such that for every g (Q(A),

Ig(x)- g(y)l IH[[ -1 (I- c) g0 if Ix- Yl < 6
0

(since Q(A) is equlcontlnuous).

The function R(1) is continuous and hence uniformly continuous, therefore there

exists 0 < 61 60 such that

R((x)) -R((Y))I < 0 f x -yl < ,
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We shall show that the same 61 works for
0
and Rn+l(1) if

sk(l(x)) -sk (I(Y))I < 0
if Ix- y[ < 61 for k I, 2, n.

Set p= Rn(1). Then if Ix- y] < 61

]R(p(x)) R(p(y))] [p(x)Q(p(x)) p(y)Q(p(y))]

Ip(x)Q(p(x)) p(x)Q(p(y))] + ]p(x)Q(p(y)) p(y)Q(p(y)))

p(x)[Q(p(x)) Q(P(Y))! + Q(p(y))]p(x) P(Y)I

that is,

< o ,{
which completes the induction and the proof of the proposition.

TTEOREM. 2. Assume that the kernel function k(x,t) is as in the proposition. Then the

following are true:

(a) equation (1.2) has exactly one solution H satisfying (2.1) if and only if

(2.3) holds. Moreover, the increasing sequence Rn(1), n 0, I, 2 converges to

H; and

(b) if inequality holds in (2.3), the sequence Fn(d), n 0, I, 2
-I

converges to H and

]tt-l(x) Fn(d(x))] IFn (d(x)) F n+l (d(x))], x [0,I]. (2.5)

PROOF. (A). If (1.2) has a solution H, then by Theorem I, fO $(t)dt I/2
CASE I. Assume (t)dt I/2 It can easily be verified that since F is

antitone:

d F2(d) F4(d) F6(d) F7(d) F5(d) F3(d) F(d).

Working as in the proposition we can easily show that the bounded set

N {F(p)/d p F(d)}

is equlcontinuous. Then the sequences F2n(d), n I, 2,

and F2n+1(d), n 0, I, 2, have convergent subsequences converging to the

functions v and w respectively. From the monotonlcity of the above sequences and the

continuity of F we obtain

F2n(d) v,

F
2n+l (d) w,

dvw,

F(v) w

and

F(w) v.

The function v has minimum value greater than zero, so that there exists a

largest ntunber q, 0 < q I, with qw v. If q I, then w v w, that is v w.
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If q < I, define on the domain of F the operator F by

Fl(p) F(p) d.

Then

v d + Fl(W) d + Fl(q-lv) d + qFl(v)

(I -q)d + q(d + Fl(V)) (I -q)d + qw

ew + qw-- (e +q)w,

for some e > O. But this contradicts the maxlmallty of q. Therefore,

F(v) v w,
-I

H _=v

is a solution of (1.2), satisfying (2.1), and the sequence Fn(d), n 0, 1, 2,
-I

converges to H Inequality (2.5) follows from the fact that

F2k(d) H
-I F2k+l(d), for k I, 2, 3 .....

CASE 2. Assume that ’0 (t)dt =I/2 let {c }, n I, 2 be a strictly increasing

’sequence of positive numbers converging to 1, and consider the functions

c , n I, 2, 3,n

Cn(t)dt =1/2 Cn < 1/2’ it follows from Case that the equationSi nce fO
H(x) + H(x)fo k(x,t)Cn(t)H(t)dt

has a solution Hn for n I, 2, 3 Then for each x [0,I] hn(X) and

n Cn + fo k(t,x) Cn(t)Hn(t)dt

k(t,x)(t)dtCnf01 k(t,x)(t)dt clf0

-1
Therefore, there exists r > 0 such that (H (x)) r for each x [0,I] and each

n
n 1, 2, 3,

Set M= {p C[0,1)/r p(x) I, x [0,I]}. Then H
-I

M, n I, 2
n

Define F: M C[0,1] by

F(p(x)) k(t,x)(t)(p(t)) -Idt, P M.

It is easy to verify that the set F(M) is bounded and equlcontlnuous.

Also, for each n,

-1
H (x) [I-2fO Cn(t)dt]I/2+ fO k(t,x) c

n (t)Hn(t)dtn

-I
Since F(HI) F(M) for each n, some subsequence F(Hnj ), I, 2, of F(Hnl),

H Then then I, 2, converges in C[0,1] to some point HO so that H
-I
n. 0

sequence F(Hn ), j I, 2 .... converges to F(H1) and H that is,
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F(H HO

Then H
0 satisfies (1.2), (2.1) and (2.2).

Therefore there exists a positive function H satisfying (1.2) and (2.1)

whenever satisfies (2.3).

(B). Assume (2.3) holds, and suppose H satisfies (1.2) and (2.1).

Since H and R(1), it follows from the fact that R is isotone that

I R(1) R2(1) R3(1) H.

Since the sequences Rn(1), n I, 2, is uniformly bounded and equicontlnuous there
n
kis a convergent subsequence, say R h H, and, since the sequence Rn(1), n 0, I,

2, is nondecreasing, the entire sequence converges to h. It follows from the

continuity of R that R(h) h. Now h must satisfy either (2.1) or (2.2), and

since 0 h H, h must satisfy (2.1). Therefore, for x [0,I],

[I- 2f (t)dt]I/2+ f k(t,x)0(t)H(t)dt H-l(x),

that is, h
-I H-I Together with the inequality h H, this implies h H.

We have proved that H is the only function satisfying both (1.2) and (2.1), and

that the increasing sequence Rn(1), n 0, I, 2, converges to H which completes

the proof of the theorem.

COROLLARY. Suppose that I and 2 are nonnegatlve, bounded, measurable functions on

[0,I] such that l(t) 2(t) almost everywhere in [0,I] and such that

f (t)dt I/2, i I, 2. Let H
i

be the unique solution of equations (1.2) and (2.1)

corresponding to $i’ i I, 2.

The n,
H H

2
PROOF. Define R

i
C[0,1] C[0,1], i-- I, 2, by

Ri(p(x)) + p(x) f k(x,t)i(t)p(t)dt p C[0,1].

If Pl and P2 are nonnegatlve functions in C[0,1] with Pl P2’ then

RI(P 1) R2(P2). I-nce RI(I R2(1), R21(1) R(1), and in general,

R(1) R(1). Since the increasing sequence R(1), converges to H
i

i I, 2, it

follows that HI H2.
Note that if (t)dt =I/2 it follows from the previous results that the

function H satisfying (1.2) and (2.1) is the unique solution of (1.2), since, in this

case (2.1) and (2.2) reduce to the same equation. However,
if 0 (t)dt <I/2 equation (1.2) may have two distinct solutions.

THEOREM 3. As sume:

(a) (t)dt <I/2and H is the unique solution of (1.2) and (2.1);
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and

(b) the following estimate is true

(t). H(t)dt >l-t
(2.6)

(c) there exists functions I’ W2’ 3 C[0,1] such that

k(x,t)[ 2(x)(1 -kt) (1 + l(t))] + O3(x) --0, for all x, t [0,1]

and
WI(X) + kx > O, for all x (0,I], i(0) 0

(2.7)

(2.8)

(1 +l(X))[ @2(x)(H(x)- 1) +O3(x)H(x)]

(HI(x) I)(I kx) for all x 6 [0,I]

where k is the unique number in (0,I) for which

1, H(t)dt
l-kt

and the function H is given by

1+ l(x)
H (x)

1-kx
H(x), x [0,1].

Then H is a solution of (1.2) and (2.2) and

Hi(x) > H(x), x (0,1], HI(0) H(0).

PROOF. By the monotone convergence theorem

lira
$(t)

H(t)dt
1-t1-kt f (t

H t )d t
k+l

-1
since (I kt) increases monotonleally with k, 0 < k < I,

If (2.6) holds, since

I-0.? H(t)dt-- [I )dt]I/2

(2.9)

(2.10)

(2.11)

and since the function f (0,I) deflned by

(t) H(t)dtf(k) /01 l-kt

is strictly increasing, there exists a unique k (0,i), for which (2.10) holds.

Let H be defined as in (2.11). Applying a trick used in [5], [9], we find that for

each x e [0,I]

( t )d t
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02(x) k(x,t)(t)H(t)dt + O3(x)

2(x) [I H’x----x-’] + 3 (x)

(by (2.7) and (2.9)) that is, H satisfies (1.2). Since H must satisfy either (2.1)

or (2.2) and since Hl(X) > H(x), x [0,I] (by (2.8)), H satisfies (2.2) and the

proof of the theorem is completed.

REMARK. By choosing the kernel function k(x,t) to be

k(x, t) x
x+t x, t [0,I]

we observe that the conditions (a) and (b) in the introduction are satisfied and that

the equaion (1.2) reduces to equation (I.I).

Moreover the conditions (2.7), (2.8), and (2.9) can then be satisfied if we

choose

and

(x) kx,I
l-kx

2(x)
l+kx

2kx
3(x)

l+kx
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