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INTRODUCTION

The regular rlght-deflnlte elgenvalue problems for second order differential

equations with elgenvalue parameter in the boundary conditions, have been studied in

Walter [I], Fulton [2] and Hlnton [3].

The object of this paper is o prove the expansion theorem for the following

regular fourth order elgenvalue problem:

u: (Ku")" (Pu’)’ + qu Au x[a,b]

u(a) (Pu’) (a) (Ku") (a) 0

(Ku"’)(b) (Pu’)(b) ),u(b)

where P,q and K are continuous real-valued functions on [a,b]. We assume that

P(x) > 0, q(x) > 0, and K(x) > 0 while I is a complex number.

Recently, Zayed [4] has studled the special case of the problem (I.I) wherein
2 2

K(x) = = is a constan and q(x) 0.

Further, problem (I.I), in general, describes the transverse motion of a rotating

beam with tip mass, such as a helicopter blade (Ahn [5]) or a bob pendulum suspended

from a wire (Ahn [6]).
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Ahn [7] has shown that the set of elgenvalues of problem (l.l) is not empty, has

no finite accumulation points and is bounded from below. He used an Integral-equation
a pproach.

In thls paper, our approach ts to glve a Hi lbert space formulation to the problem

(I.I) and self-adJolnt operator defined In it such that (I.I) can be considered as the

efgenvalue problem of thls operator.

2. HILBERT SPACE FORMULATION.

We define a Hilbert space H of two-component vectors by

H L2(a,b) ( C;

with Inner product

<f,g>

and norm

b

flldx + f2g-"2
a

,f,g (2.)

whe re

and

b2 2 2

f (fl’ f2 (fl (x), fl(b)) H

g (gl’ g2 (gl (x), gl (b) g H

(2.2)

We can define a linear operator A:D(A) H by

Af (Tfl,- (Kf")(b) + (Pf;)(b)) V f (fl,f2) D(A) (2.3)

where the domain D(A)

following:

of A is a set of all f (fl’f2) H which satisfy the

fl’ f and fl are absolutely conClnuous with

b

"r1L2(a,b) and (Klfj 2
/ Pjflj 2 + qjfll2)dx < ..

a

fl(a) (Pfi)(a) (Kf)(a) 0

(ill) f2 fl(b)

REMARK 2.1. The parameter Is an elgenvalue of (1.1) and f

eigenfunctlon of (I.I) If and only if

f (fl,fl(b)) D(A) and Af Af

is a corresponding

Therefore, the eigenvalues and the elgenfunctions of problem (I.I) are equivalent

to the elgenvalues and the etgenfunctions of operator A.
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We consider the followlng assumptions:
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(1) x/li [K’(x)fl(x) K(x)f|’(x)] O,

(ll) x+ll [K’ (x)g i(x) K(x)gi’ (x) 0

LEMMA 2.1. The linear operator A in H is symmetric.

PROOF. On using the boundary conditions of (I.I) we get,

b
<Af,g> f T f )idx + [-(Kf{") (b) + (Pf)(b)]I

a
(b)

b b b

f (Kf;’)"idx- f (Pf)’idx + f qf1dx- (Kf")(b)l (b)
a a a

+ (Pf) (b)g l(b) (2.6)

Integrating the first term of (2.6) by parts four clmes and Integraclng the second

term of (2.6) by parts twice, we gec

b
<’g> f f [(’)’’ (P-)’ + q-l ]dx + fl(b) t-(K-")(b)+(’)(b)l

+ f’(b) [K’(b)gl(b) K(b)g(b)] gl(b) [K’(b)fl(b)-K(b)f(b)]

Applying the conditions (2.5) and uslng the boundary conditions of

(l.l))we obtain

b
’")(b) + (Pg)(b)] <f Ag>.<Af g> f fl(--gl )dx + fl (b) [--gl

a

REMARK. 2.2. For all f (fl ’f2 in D(A) and f2 fl (b) #: 0, the domain D(A) is

dense in H.

Since the operator A in H is symmetric and dense In H, A is self-adJolnt.

3. THE BOUNDEDNESS.

We shall show that the self-adjolnt operator A is unbounded from above and

bounded from below. We also show that A is strlctly positive.

LEMMA 3.1.

(i) If f,f’ are absolutely conclnuous with f(a) 0 and P(x) > 0 in

[a,b], then we have P(x) ) c for some constant c > 0 such that

b

a

(ll) For fC2[a,b], there exlscs a positive constant c
2

such chac

b b

f If(x)l 2
dx, c

2 f
a a
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PROOF.

(i) Since P(x) > 0 tn [a,b], we have P(x) )c for some c

Consequently, on using Schwarcz’s inequality, we get

>0.

b b b

I <I’<I2 I I’<I f I’<I
a a a

b
where ’(x)dx f(b) f(a) f(b) Since f(a) O.

a

(if) By using Theorem 2 in [8, p.67], we have for f(x) ecl[a,b],

Since

f If(x) 2
dx ’ 4(b-a)2 df(._. 12dxdx

a a

dx ’41 dx-

the n
b I )2f I<)l dx’ 4(b-a) 2 ldl()l 2 b

dx
dx < 16(b-a f If’ (x) j2dx

a a a

Applying (3.1) again for If’(x) t, we get

b

f If’(x) 2
dx , 16(b-a)2

b

f f"(x) 2dx
a a

(3.1)

(3.2)

from (3.1) and (3.2) we get

b b

f If(x)l 2
dx’ c2 f If"(x)l 2

a a
dx where the constant c2=256(b-a) 4.

LEMMA 3.2. The linear operator A is bounded from below.

PROOF. On using the boundary conditions of (I.I) we get

b

f (T fl)ldx + [-(Kf")(b) + (Pfl)(b)]-l(b)
a

b b b

f (Kf’)"l dx- f (Pf’l)-’fl dx + f qfl’l dx-(Kf{") (b)[l (b)
a a a

+ (Pf)(b)Tl(b). (3.3)

In=egractng (3.3) by parts twice and using she boundary conditions of (1.1), we obtain

b

<Af f> f;(b) tK’(b)l(b) K(b)l(b)] + f Klfli2dX
a

b b

a a

On using (2.5) (ll) and lemma (3.1), we gec

<Af,f> dx
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where

Therefore

b

a

[K(x)c 3 inf + q(x)
xs[a,b]

where he constan c rain (c3, cl).

It follows, from (3.4), thac the operator A is bounded from below.

Since" c > O, K(x) > 0, q(x) > O, c
2

> 0 and c mln (c3,c I) then the constant c is

positive (c > O) and hence A Is strictly positive.

REMARK 3. I.

(i) Since A is a symmetric operator (from lemma 2.1) then A has only real

e ige nva lue s.

(ll) By Lemma 3.2, we deduce chat the set of all elgenvalues of A is also

bounded from below.

(ill)Since A is strictly poslclve, then the zero is not an elgenvalue of A.

By using theorem 3 in [8, p.60] we can state that:

Since A in H is smmetrlc and bounded from below, then for every elgenvalue %1 of

A in H, %1 p c where the constant c is the same as in (3.4). This means that

0 < c %1 %2 %i according to the slze and %1 as I (R).

This implies that the set of all elgenvalues of A Is unbounded from above.

REMARK 3.2. Since the operator A is self-adJolnc, chert A has only real

elgenvalues and the elgenfuncclons of A are orthonormal. By using theorem 3 in [8,

p.30], the density of the domain D(A) in H gives us the completeness of the

orthonormal system of elgenfunctlons QI’Q2’Q3’ of A.

4. THE EIGENFUNCTIONS OF THE OPERATOR A.

We suppose %(x), %(x), X%(x) and y%(x), where % 6 C is noc an elgenvalue of A,

are the fundamental set of solutions of the fourth order differenclal equation of

(I.I) with the initial conditions:

,(a) O, (P’)(a) 0, ’(a) l, (K,%)(a) 0 (4oi)

x%{’a). O,
-k-

-(P")(a) 0, -A-’"(a) 0, (Kb’")(a)..k (4.2)

x%(b) 0, (Px’,)(b) l, x%(b) O, (Kx")(b) (4.3)

y%(b) I, (Py’)(b) I+%, ’(b) O, (Ky’’)(b) (4.4)

Therefore the Wronsklan is

w --tim x,(x) (t:’.)(.) (t:’x)(x)..) -x , o
x/b
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Thus the solutions Ck(x),@k(x),xk(x) and yk(x) are linearly independent of Tu ku.

Putting x b, we obtain the Wronsklan in the form:

’")(b)W OA(b) [XCA(b) (P)(b) + (KCA

0xCb) [XA(b) (P,’Q(b) + (K*’")Cb)] # 0 (4.5)

Now, for f (fl’f2) H, we define 0 (01,02) D(A) as the unique solution

of (xi- A) f.

Application of variation of parameter method yields the unique solution

D(A) of (AI A)@ f, f H with:

XI T) 01 f

A01Cb) (P01)Cb) + (K01")Cb) f2
(4.6)

The re fore

b 0ACx) al (t) +

@1 (x) f w fl (t)dt
a

b xxCx)3(t) +
+

W fl (t)dt

whe re

+ dlCx(x) + d20x(x) + d3xx(x) + d4x(x),

-p(c)
1 (t) K(t) ,x(t) xx(c)

,’x(t) xx(c)

(4.7)

2(t) l(t:)

-P(C)
ct3(t)-’- K(t------

and

P(t)
t4(t) K(C)

while dI, d2, d
3
and d

4
are constants

Calculation of Of(b) O(b) and ’"(b) from (4 7) and substitution into (4 6) with-1
the initial conditions (4.3) and (4.4), we can get the constants dl, d2, d

3
and d

4
as

follows:
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b
d [- f2’(b) + ol(t)f l(t)d],

a
b

,x(b + fd2 --g if2
and d

3
d4 O.

a

Consequently, we deduce thac

and

f2 b

01(x) -- [@A(x)(b) h(x)@’(b)] + f G(x,c,h)fl(t)dc
a

0
2 01 (b)

where G(x,c,h) is the Green’s function defined by:

(4.8)

G(x,t,h) (4.9)

XhCX)a3(t + "Yh(X)a4(t) a < t:: x b

-I
The form of equaclons (4.8) and (4.9) shows that the inverse operator (hi A)

is actually compact; for details of argument of theorem 5 in [8, p.120] can be used.

5. EXPANSION THEOREM.

We now arrive ac the problem of expanding an arbitrary function f(x) H for

x [a,b] in terms of the elgenfunctlons of (I.I). The results of our ivestlgatlons

are summarized in the following theorem:

THEOREM 5.1. The operator A in H has unbounded set of real elgenvalues of finite

multlpllclty, (they have at most multiplicity four), wlthouc accumulation points

in (-, ) and they can be ordered according to the size, 0 < c 4 < h
i

with X
I

as I . If the corresponding elgenfunctlons 01 ,02 ,03 form a

complete orthonormal system, then for any function f(x) E H, we have the expansion:

f(x) X < f, 0
i

> 0
i

(4.10)

which is a uniformly convergent series.

The above theorem has some interesting corollaries for particular choices of f.

COROLLARY 4.1. If fl eL2(a’b) and f (f1’0) e H, then we have

b
(1) fl= (f flOildX)Otl(X)

i--1 a

b
(ll) o 7. (f flOtldX)Ot2

t=l a
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COROLLARY 4.2. If i-- (il (x)’ 12 D(A) and f (0,I) H, we have:

i=l i=l
(x)

(il) ;. [1212 ;. [li(b)]2"
i=l i=l
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