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ABSTRACT. In [i], it was shown that a function f X Y is weakly quasi
-1 -1

continuous if and only if f (CI(V))C Cl(Int(f (CI(V)))) for every open set V

of Y. By utilizing this result, the present author [2] showed that a function

f X Y is weakly quasi continuous if and only if for every regular closed set

-i
F of Y, f (F) is semi-open in X. In this note, the author shows that these

results are false and corrects the proofs of Theorem 6.1.7 and Lemma 6.4.4 of [2].
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The purpose of this note is to point out that Theorem 2 of [i] and Theorem 4.2

of [2] are false, and to correct the proofs of Theorem 6.1.7 and Lemma 6.4.4 of [2].

Let S be a subset of a topological space. The closure and the interior of S are

denoted by CI(S) and Int(S), respectively. A subset S is said to be semi-open

[3] (resp. regular-closed) if S C Cl(Int(S)) (resp. S Cl(Int(S))). A function

f X Y is said to be semi-continuous [3] (resp. semi-open [4]) if for every

open set V of Y (resp. X), f-l(v) (resp. f(V)) is semi-open in X (resp. Y).

A function f X Y is said to be almost-continuous [5] if for each x e X and
-I

each open neighborhood V of f(x), Cl(f (V)) is a neighborhood of x.

DEFINITION. A function f X Y is said to be weakly quasi continuous [i]

(briefly w.q.c.) if for each x e X, each open set U containing x and each open

set V containing f(x), there exists an open set G of X such that # G C U

and f(G) C CI(V).

Popa and Stan [i] obtained the following characterization of w.q.c, functions.

THEOREM A ([i, Theorem 2]). A function f X Y is w.q.c, if and only if

f-I(cI(V))C Cl(Int(f-l(cl(V)))) for every open set V of Y.

In [2], among others, the author established the following three statements.

THEOREM B ([2, Theorem 4.2]). A function f X Y is w.q.c, if and only if
-i

for every regular closed set F of Y, f (F) is semi-open in X.

THEOREM C ([2, Theorem 6.1.7]). The composition go f X Z of a continuous

function f X Y and a semi-continuous function g Y Z is not necessarily

w.q.c.
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LEMMA D ([2, Lemma 6.4.4]). Let f X Y be an open continuous surjection

and g Y Z a function. If go f X Z is w.q.c., then g is w.q.c.

The author utilized Theorem A in order to prove Theorem B. Moreover, Theorem

B was utilized in the proofs of Theorem C and Lemma D. However, it follows from

Example 2 (below) that the necessity of Theorem A is false and hence so is Theorem

B. Thus, it is necessary to revise the proofs of Theorem C and Lemma D. For this

purpose, we have the following modification of Theorem A.

THEOREM i. A function f X Y is w.q.c, if and only if for every open set
-1 -1

V of Y, f (V) C Cl(Int(f (CI(V)))).

PROOF. Necessity. Suppose that f is w.q.c. Let V be any open set of Y
-1

and x e f (V). For each open set G of X containing x, there exists an open

set U of X such that # U G and f(U) CI(V). Therefore, it follows that

U C f-I(cI(V)) and U C Int(f-l(cl(V))). Since # U C G Int(f-l(cl(V))), x e

-i -i -i
Cl(Int(f (CI(V)))) and hence f (V) C Cl(Int(f (CI(V)))).

Sufficiency. Let x be any point of X, G any open set of X containing x
-i

and V any open set of Y containing f(x). By hypothesis, we have x e f (V) C
Cl(Int(f-l(cl(V)))) and hence G(Int(f-l(cl(V))) # . Put G Int(f-l(cl(V)))

U, then we obtain # U G and f(U) CI(V). This shows that f is w.q.c.

The following example =iows that the necessities of Theorems A and B are both

false.

EXAMPLE 2. Let X {a, b, c}, {, X, {a}, {b, c}} and o {, X, {a},

{b}, {a, b}}. Let f (X, ) (X, o) be the identity function. Then f is w.

q.c. by Theorem i. Let V {a} o, then CI(V) {a, c} is a regular closed set

of (X, o). However, f-I(cI(V)) {a, c} and Cl(Int(f-l(cl(V)))) {a}. Thus,

f-I(cI(V)) is not semi-open in (X, ) and f-I(cI(V)) Cl(Int(f-l(cl(V)))).
REMARK 3. (I) It follows immediately from Theorem 1 that the sufficiencies of

Theorems A and B are both true.

(2) In the proof of [2, Theorem 6.1.7], the set V {b, c, d} is clopen in

(Z, ), (g f)-l(v) {b, c, d} and Cl(Int((g f)-I(cI(V)))) {b}. Therefore,

by Theorem 1 g f is not w.q.c, and hence it is not semi-continuous.

Next, we give the correct proof of Lemma D in the improved form.

THEOREM 4. Let f X Y be a semi-open almost continuous surjection and

g Y Z a function. If g f X Z is w.q.c., then g is w.q.c.

PROOF. Let W be any open set of Z. Since g f is w.q.c., by Theorem 1
-i -i

we have (g f) (W) Cl(Int((g f) (CI(W)))). Since f is almost continuous,

for every subset A of X, f(Cl(Int(A)))Cl(f(Int(A))) [6, Theorem 6]. Moreover,

since f is semi-open, f(Int(A)) .Cl(Int(f(A))) [4, Theorem 9] and hence

f(Cl(Int(A))) Cl(Int(f(A))) for every subset A of X. Therefore, we obtain
-i -i

g (W) Cl(Int(g (CI(W)))). It follows from Theorem 1 that g is w.q.c.

THEOREM 5. Let f X Y be an open continuous surjection. A function

g Y Z i .q.c. if and only if the composition g f X Z is w.q.c.

PROOF. Necessity. Let W be any open set of Z. Since g is w.q.c., by
-i -i

Theorem 1 g (W) Cl(Int(g (CI(W)))). Since f is open continuous, for every
-i -i

subset B of Y f (Cl(Int(B))) Cl(Int(f (B))). Therefore, we obtain

(g f)-l(w) Cl(Int((g f)-I(cI(W)))) and hence by Theorem 1 g f is w.q.c.

Sufficiency. Since an open continuous function is semi-open almost continuous,

this is an immediate consequence of Theorem 4.
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