A NOTE ON WEAKLY QUASI CONTINUOUS FUNCTIONS

TAKASHI NOIRI

Department of Mathematics Yatsushiro College of Technology Yatsushiro, Kumamoto, 866 Japan

(Received March 10, 1987 and in revised form September 15, 1987)

ABSTRACT. In [1], it was shown that a function $f : X \rightarrow Y$ is weakly quasi continuous if and only if $f^{-1}(Cl(V)) \subset Cl(Int(f^{-1}(Cl(V))))$ for every open set V of Y. By utilizing this result, the present author [2] showed that a function $f : X \rightarrow Y$ is weakly quasi continuous if and only if for every regular closed set F of Y, $f^{-1}(F)$ is semi-open in X. In this note, the author shows that these results are false and corrects the proofs of Theorem 6.1.7 and Lemma 6.4.4 of [2].

KEY WORDS AND PHRASES. weakly quasi continuous. 1980 AMS SUBJECT CLASSIFICATION CODE. 54C10.

The purpose of this note is to point out that Theorem 2 of [1] and Theorem 4.2 of [2] are false, and to correct the proofs of Theorem 6.1.7 and Lemma 6.4.4 of [2]. Let S be a subset of a topological space. The closure and the interior of S are denoted by Cl(S) and Int(S), respectively. A subset S is said to be *semi-open* [3] (resp. *regular-closed*) if $S \subset Cl(Int(S))$ (resp. S = Cl(Int(S))). A function f: $X \rightarrow Y$ is said to be *semi-continuous* [3] (resp. *semi-open* [4]) if for every open set V of Y (resp. X), $f^{-1}(V)$ (resp. f(V)) is semi-open in X (resp. Y). A function f: $X \rightarrow Y$ is said to be *almost-continuous* [5] if for each $x \in X$ and each open neighborhood V of f(x), $Cl(f^{-1}(V))$ is a neighborhood of x.

DEFINITION. A function $f : X \rightarrow Y$ is said to be weakly quasi continuous [1] (briefly w.q.c.) if for each $x \in X$, each open set U containing x and each open set V containing f(x), there exists an open set G of X such that $\emptyset \neq G \subset U$ and $f(G) \subset Cl(V)$.

Popa and Stan [1] obtained the following characterization of w.q.c. functions. THEOREM A ([1, Theorem 2]). A function $f : X \rightarrow Y$ is w.q.c. if and only if $f^{-1}(C1(V)) \subset C1(Int(f^{-1}(C1(V))))$ for every open set V of Y.

In [2], among others, the author established the following three statements. THEOREM B ([2, Theorem 4.2]). A function $f : X \rightarrow Y$ is w.q.c. if and only if for every regular closed set F of Y, $f^{-1}(F)$ is semi-open in X.

THEOREM C ([2, Theorem 6.1.7]). The composition $g \circ f : X \to Z$ of a continuous function $f : X \to Y$ and a semi-continuous function $g : Y \to Z$ is not necessarily w.q.c.

LEMMA D ([2, Lemma 6.4.4]). Let $f : X \rightarrow Y$ be an open continuous surjection and $g : Y \rightarrow Z$ a function. If $g \circ f : X \rightarrow Z$ is w.q.c., then g is w.q.c.

The author utilized Theorem A in order to prove Theorem B. Moreover, Theorem B was utilized in the proofs of Theorem C and Lemma D. However, it follows from Example 2 (below) that the necessity of Theorem A is false and hence so is Theorem B. Thus, it is necessary to revise the proofs of Theorem C and Lemma D. For this purpose, we have the following modification of Theorem A.

THEOREM 1. A function $f: X \rightarrow Y$ is w.q.c. if and only if for every open set V of Y, $f^{-1}(V) \subset Cl(Int(f^{-1}(Cl(V))))$.

PROOF. Necessity. Suppose that f is w.q.c. Let V be any open set of Y and $x \in f^{-1}(V)$. For each open set G of X containing x, there exists an open set U of X such that $\emptyset \neq U \subset G$ and $f(U) \subset Cl(V)$. Therefore, it follows that $U \subset f^{-1}(Cl(V))$ and $U \subset Int(f^{-1}(Cl(V)))$. Since $\emptyset \neq U \subset G \cap Int(f^{-1}(Cl(V)))$, $x \in Cl(Int(f^{-1}(Cl(V))))$ and hence $f^{-1}(V) \subset Cl(Int(f^{-1}(Cl(V))))$.

Sufficiency. Let x be any point of X, G any open set of X containing x and V any open set of Y containing f(x). By hypothesis, we have $x \in f^{-1}(V) \subset Cl(Int(f^{-1}(Cl(V))))$ and hence $G \cap Int(f^{-1}(Cl(V))) \neq \emptyset$. Put $G \cap Int(f^{-1}(Cl(V)))$ = U, then we obtain $\emptyset \neq U \subset G$ and $f(U) \subset Cl(V)$. This shows that f is w.q.c.

The following example shows that the necessities of Theorems A and B are both false.

EXAMPLE 2. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function. Then f is w. q.c. by Theorem 1. Let $V = \{a\} \in \sigma$, then $Cl(V) = \{a, c\}$ is a regular closed set of (X, σ) . However, $f^{-1}(Cl(V)) = \{a, c\}$ and $Cl(Int(f^{-1}(Cl(V)))) = \{a\}$. Thus, $f^{-1}(Cl(V))$ is not semi-open in (X, τ) and $f^{-1}(Cl(V)) \notin Cl(Int(f^{-1}(Cl(V))))$.

REMARK 3. (1) It follows immediately from Theorem 1 that the sufficiencies of Theorems A and B are both true.

(2) In the proof of [2, Theorem 6.1.7], the set $V = \{b, c, d\}$ is clopen in (Z, θ), $(g \circ f)^{-1}(V) = \{b, c, d\}$ and $Cl(Int((g \circ f)^{-1}(Cl(V)))) = \{b\}$. Therefore, by Theorem 1 g o f is not w.q.c. and hence it is not semi-continuous.

Next, we give the correct proof of Lemma D in the improved form.

THEOREM 4. Let $f : X \rightarrow Y$ be a semi-open almost continuous surjection and g : Y \rightarrow Z a function. If gof: X \rightarrow Z is w.q.c., then g is w.q.c.

PROOF. Let W be any open set of Z. Since $g \circ f$ is w.q.c., by Theorem 1 we have $(g \circ f)^{-1}(W) \subset Cl(Int((g \circ f)^{-1}(Cl(W))))$. Since f is almost continuous, for every subset A of X, $f(Cl(Int(A))) \subset Cl(f(Int(A)))$ [6, Theorem 6]. Moreover, since f is semi-open, $f(Int(A)) \subset Cl(Int(f(A)))$ [4, Theorem 9] and hence $f(Cl(Int(A))) \subset Cl(Int(f(A)))$ for every subset A of X. Therefore, we obtain $g^{-1}(W) \subset Cl(Int(g^{-1}(Cl(W))))$. It follows from Theorem 1 that g is w.q.c.

THEOREM 5. Let $f : X \rightarrow Y$ be an open continuous surjection. A function $g : Y \rightarrow Z$ is w.q.c. if and only if the composition $g \circ f : X \rightarrow Z$ is w.q.c.

PROOF. Necessity. Let W be any open set of Z. Since g is w.q.c., by Theorem 1 $g^{-1}(W) \subset Cl(Int(g^{-1}(Cl(W))))$. Since f is open continuous, for every subset B of Y $f^{-1}(Cl(Int(B))) \subset Cl(Int(f^{-1}(B)))$. Therefore, we obtain $(g \circ f)^{-1}(W) \subset Cl(Int((g \circ f)^{-1}(Cl(W))))$ and hence by Theorem 1 $g \circ f$ is w.q.c.

Sufficiency. Since an open continuous function is semi-open almost continuous, this is an immediate consequence of Theorem 4.

414

REFERENCES

- POPA, V. and STAN, C. On a decomposition of quasi-continuity in topological spaces (Romanian), <u>Stud. Cerc. Mat. 25</u> (1973), 41-43.
- NOIRI, T. Properties of some weak forms of continuity, <u>Internat. J. Math. Math.</u> <u>Sci. 10</u> (1987) (to appear).
- LEVINE, N. Semi-open sets and semi-continuity in topological spaces, <u>Amer</u>. <u>Math. Monthly 70</u> (1963), 36-41.
- BISWAS, N. On some mappings in topological spaces, <u>Bull</u>. <u>Calcutta Math</u>. <u>Soc</u>. <u>61</u> (1969), 127-135.
- 5. HUSAIN, T. Almost continuous mappings, Prace Mat. 10 (1966), 1-7.
- ROSE, D. A. Weak continuity and almost continuity, <u>Internat. J. Math. Math.</u> <u>Sci.</u> 7 (1984), 311-318.