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ABSTRACT

The Stuttering Generalized Waring Distribution arises in connection

with sampling from an urn that contains balls of two colours (black and

white) and it can be thought of as an intermingling of generalized Waring

streams (Panaretos and Xekalaki [4]).

Because of its application potential a study of its properties

would be worthwhile. In this paper it is shown that it can be obtained

as a mixture of the generalized Poisson distribution. It is also

demonstrated that, in an urn scheme, increasing the number of balls in the

urn in an appropriate fashion one can end up with a Poisson type or a

negative blnomial type sampling distribution as an approximation

to the stuttering generalized Waring distribution.
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1. INTRODUCTION

With the aim of preventing accidents, accident theory has received

much attention. In the framework of some of the various hypotheses
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that have been developed the generalized Waring distribution (GWD)

was obtained as the distribution of accidents (see e.g. Irwin [2],

Xekalaki [S], [8], [7]). Generalizing this distribution Panaretos and

Xekalaki [4] introduced the stuttering generalized Warlng distribution

(SGWD) in the context of an un scheme

This is an intermingling of generalized Waring streams and is defined by

the probability function (p.f)

P(X=x)=
C(zm
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(1.1)

where a)denotes the ratio FC+)/F(a), >0, R x=O,l,2,..

The probability generating function (p.g.f) of this distribution

is given by
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where F
D
denotes Lauricella’s hypergeometric series of type D defined by

FD(CX; 1, 82, k; X+-i+’; S S2, Sk
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s s i=I k. For k=l one obtains the GWD. So the

definition of this distribution enhances the application potential

of the GWD as the underlying mechanism causing accidents as well as various

other phenomena in many diverse areas ranging from linguistcs to inventory

control.

The reason lies in the fact that (1.1) can be employed in situations

where single events, pairs of events, triplets of events k-plets of

events can be thought of as beeing jointly distibuted according to the

k-variate GWD. In the context of car accident statistics this implies

that the SGWD would be expected to describe the distibution of the total

number of cars involved in accidents if it is reasonable to assume

that the joint distribution of the numbers X X2, Xk of accidents

involving one, two k cars simultaneously is the k-variate GWD.
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The ordinary GWD (case k=l) cRn be obtained through mixinE from a

Poisson distribution. In particular, it cn arise as a mixture of a

Poisson distribution whose parameter A is itself a random variable that

follows a distribution which is a scale mixture of gamma distributions.

Moreover, the GWD tends to a Polsson distribution for certain limiting values

of its parameters.

One would therefore expect that a similar connection exists between

its generalization as given by (1.1) and the Polsson or the generalized

Poisson distribution. Indeed it has been shown (Panaretos [3]) that the

SGWD can be obtained as a mixture of generalized Polsson distibutlons

when the mixing distribution is a scale mixture of gamma distlbutions.

In the next section Panaretos’s [3] result is restated and then some

limiting cases of the SGWD are examined. Specifically, it is shown that

for certain limiting values of its parameters the SGWD tends to a

generalized Poisson distribution as well as to a negative binomial type

of distribution. Finally, it is demonstrated in section 3 that the

SGWD can arise in the context of an accident proneness hypothesis.

"2. SOME PROPERTIES OF THE SGWD.

As is well known, a generalized Poisson distribution is a distribution

whose p.g.f, can be put in the form

G(s) exp{A(g(s)-l)}, A>O (2.1)

where g(s) is a valid p.g.f.. It can be shown (Feller, [I], p.291)

that G(s) in (2.1) can alternatively be represented by

G(s) exp Ai(si-1) (2.2)

where A =AE
(I)

(O)/i!, m U {+ m}, i.e. by the p.g.f, of the random

variable (r.v.) Z iZ! with Zl,Z2 Z, as independent Poisson (A)
I=1

variables.

Theorem 2.1 (Panaretos [3]) Let XI(A )kk) be a non-negative

integer valued r.v. whose distribution contitional on A ,A2, ,Ak
is the generalized Poisson distribution with p.g.f, given by (2.2) for

are independent gsmma r.v. sm=k<+m Assume that A1, A., A
k
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with probability density functions (p.d.f.)

h m-1

f CA A e-Alhi
r(m

where m > O, i=l 2 k and h is itself a. r v. with p d f.

r(a+c)
f(h) h
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Then the distribution of X is the SGWD given by (I.I).

(2.3)

(2.4)

Theorem 2.2 The SGWD with parameters k a, m m
2
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binomial r.v.’s with parameters
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Hence the result.

Theorem 2.3 The SGWD with parameters k, mx,mm,...,mk and c tends to the

generalized Poisson distribution with p.g.f, given by (2.2) where m=k<+m,

A =am /(c+a), i=1,2 k if a.->+m m ->+m i=1,2 k c->+m so that

am /(a.+C)<+m and

Proof: Let lim stand for limit as a+m m +m i=1,2 k,
H’

J(a+c)->co, am /(a+c)<+m Then from (1.2) we obtain lim G(s)
H’
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This establishes the proof of the theorem.

3. ACCIDENT THEORY AND THE STI/ITERING GENERALIZED WARING

DISTRIBUTION.

One of the various hypotheses that have been developed in the area

of accident analysis is that of accident proneness-accident risk: An

accident is the yield of factors that ceun be attributed to chance,

exposure of the individual to external risk nd psychology of the

individual. In this context the ordinary CWD was shown (Irwin, [2]) to

arise as the distribution of accidents incurred by an accident prone
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population exposed to varying external risk on suitable assumptions

concerning the forms of the distribution of the proneness and risk

parameters. In particular it arises on the assumption that for a given

individual of proneness h the accident experience is Poisson with parameters

(Alh) where Alh refers to the effect of the individual risk exponure. Then

if Alh and h vary from individual to individual according to a gamma

and a beta distribution of the second kind respectively, the GWD is

arrived at as the distribution of accidents. It becomes obvious,

therefore, that the results of theorem 2.1 cun be put in a similar

perspective thus leading or a generalization of Irwin’s accident proneness

hypothesis giving rise to the SGWD as an accident distribution

Consider a population of individuals and let X[(,h) be the number

of accidents experienced by an individual of proneness h exposed to an

enviromental risk indexed by a parameter vector (A[h)=((A A2 A )[h)1’ k

where the paraeters (%1,2 Ak may be considered to be reflecting the

effects of different types of hazards. Assume that X[(,h) follows a

generalized Poisson distribution with p.f. given by (2.2) and that

differences in risk exposure from individual to individual are

effected through an uncorrelated multivariate gsauna distribution

with p.d.f, given by (2.3). Then for individuals of the same proneness h

the distribution of accidents is given by (2. S). If we further assume

that differences in proneness manifest themselves in the form of the

beta distribution defined by (2.4), then the final distribution of

accidents will be the SGWD.
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