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ABSTRACT. Let E be a compact subset of the complex plane We denote by Ro(E) the

algebra consisting of the (restrictions to E of) rational functions with poles off

E. Let m denote the 2-dimensional Lebesgue measure. Let R2(E) be the closure

of R (E) in L2(E din).
o
In this paper we consider points x E such that "evaluation at x" extends

R
2

from R (E) to a continuous linear functional on (E). These points are bounded pointo
evaluations on R2(E). Hedberg, Fernstrm and Polklng used capacity to identify

bounded point evaluations. We use their results to show that the existence of a

bounded point evaluation x E E is equivalent to the existence of a superharmonlc

function u(y) that grows sufficiently fast as y approaches x through the complement of

E.
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I. INTRODUCTION

Subharmonic and superharmonic functions have been useful in solving the Dirichlet

problem: Given an open set S = with compact closure and a real-valued, continuous

function h defined on S, find a function v harmonic in S and continuous on the closure

of S such that

v(x) h(x) for each x S.

O. Perron showed that for many sets S one can get a solution by taking the

supremum of the family of subharmonlc functions on S whose boundary values are not

greater than h(x). A point x S is an irregular boundary point for S if and only if

there is a superharmonic function u on a neighborhood D of x such that

u(x) < lim u(y) + .
yx

yE (D\S)\
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We wlll be particularly interested in those superharmonlc functions that are the

Green potentials of measures supported on compact subsets of Using these measures

we will define a capacity that is equivalent to the Wiener capacity. Hedberg,

Polking, and Fernstrm have shown that this capacity is helpful in identifying bounded

point evaluations. For compact sets E c we will relate the existence of a bounded

R2point evaluation x on (E) to the existence of a superharmonlc function in a

R2neighborhood of x. We wlll prove that x is a bounded point evaluation on (E) if and

only if there is a superharmonic function u such that u(x) < , and

y e (D\E)\{x

where D is a neighborhood of x.

2. SUPERHARMONIC FUNCTIONS AND BALAYAGE.

One way to define a superharmonlc function u is to say that u is superharmonlc if

and only if -u is subharmonlc. To be more specific let S be open and let u(x) be a

function defined for xe S.

DEFINITION 2.1. A function u(x) is called superharmonlc on S if for xE S

(1) u(x) + and u(x) +

(ll) u is lower seml-contlnuous, and
2 le(Ill) u(x) ) fO u(x + re dO whenever the disk with radius r > 0 and

center at x is contained in S.

superharmonlc in S.

Although superharmonlc functions need not be continuous, one can define a new

topology on in which all superharmonlc functions are continuous. The smallest such

topology is called the fine topology. A set E is thin at x if x is not a fine

limit point of E. The following theorem is part of Brelot’s contribution to potential

theory. For the proof see[l, p. 210].

THEOREM 2.1. A set E is thin at a limit point x of E if and only if there is a

superharmonic function u on a neighborhood D of x such that

u(x) < llm u(y) + .
y /x

y (D\E)\ {x

Later we will construct a montone increasing sequence {u
i

of superharmonlc

functions on a set S that is open in the ordinary topology. By a lemma in [I, p.68]

sup u
i

is either harmonic or identically (R).

There is a way to associate with each non-negatlve superharmonlc function u on S

and each set E C S another superharmonlc function that dominates u on E and satisfies

a special property. This function can be defined so that when E is compact it equals

a potential with respect to the Green function of S. We begin by letting GS be the

Green function of S. Let u be a non-negatlve superharmonlc function on S. S will

denote the class of superharmonlc functions on S. If u S is non-negatlve and E is

any subset of S, let

{V&4s: v ) 0 on S, v ) u on m}.

u
inf IV: v I.Let RE
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The function satisfies (i) and (iii) of the definition of superharmonlc.
uR
E may not be lower semi-continuous. By defining

(x) lira Inf (y)
we get a function that is superharmonic on S. (x) is called the balayage_ of u

relative to E in S. When E S is compact, the following fact about (x) will be

useful [I, p.135]: (x) is a Green potential, i.e. there is a Borel measure B on S

such that

(x) fGs(x,y)d(y).

3. POTENTIAL THEORETIC CAPACITY.

Let S C be an open set having a Green function G
S Let E C be compact and

let u be the function identically on S. Then by [I, p.138] (x) is a superharmonic

function on S that is the potential of a measure with support in E.

DEFINITION 3.1. The measure E for which (x) GSE is called the capacitar

distribution of E.

DEFINITION 3.2. The capacity of E (relative to the set S) is defined to be

C(E) (E) with C() O.

The C capacity is equal to the Wiener capacity which we will denote by C 2
For

more information on why C(E) C2(E) see [I, Lemma 7.19] and [2, Chap. II]. Also, in

[3, p. 160] it is shown that if E is a continuum with diameter d, there are positive

constants K and K2 depending only on the distance from E to , such that

K / (log I/d#/2 C2(E) K
2 1 Clog I/d#/2

There is a C2 capacity series that converges at the points where the complement

of a set E C is thin. To state this as a theorem we will need still more notation.

Let j < k be positive integers. Define

< z <

and A[J,k] {z : 2-k ’ [z < 2-j

Now let A A[n, n+1]. The next theorem is due to Wiener [2] It is a statement
n

about thinness at an arbitrary point x .. We assume after a possible translation

that xffi0. The set E need not be compact

THEOREM 3.1. (Wiener) Let E C . Then the complement of E is thin at 0 if and

only if

I nC2(An\E) <
nffil

Fernstrom and Polking used another C
2 series to identify bounded point

evaluations [4]. Let E C be compact and let R (E) denote the algebra of rationalo
R2functions with poles off E. Let m be 2-dimensional Lebesgue measure (E) will

L2denote the closure of Ro(E) in the norm (dm).

DEFINITION 3.3. A point x e E is a bounded point evaluation (BPE) on R2(E) if

there is a constant C such that

E o

The next theorem applies to an arbitrary point x . We may assume after a

possible translation that x=0.
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THEOREM 3.2. (Hedberg, Ferstrm, and Polking) The point 0 E is a BPE

R2on (E) if and only if
2n

2 C2(A\E) <
n--I

The existence of a BPE at O E is a local property; hence it is no restriction to

assume that E = {z: zl <I/ D. The Green function for D is

GD(0,z) -log 21z for z D\ {0.

We will need several lemmas to prove our theorem. These are modified versions of

lemmas which can be found with their proofs in [I, Chap. I0].

LEMMA 3.1. There is a constant b independent of j such that

og21y-zl
b

llOg2
whenever y \f: 2-j-2 1 2-j / and z {: 2-j-I I 2-Jl for each positive

integer j 3.

PROOF. We ii consider two cases.

Case I. [y[ > 2-j+l, > 3. The absolute value of log2]y-z[ is no greater than

(j-l)log2. e absolute value of log2]y[ is no less than (J-2)log2. us the

quotient does not exceed (j-l)/(j-2).

2.

reover, log2]y] is greater in absolute value than (j+l)log2. Thus thevaue.
quotient does not exceed I. Any b > will satisfy the statement of the lemma.

LE 3.2. If S is an open set having a Green function GS and U is a nonempty

open set havi a compact closure U C S, there is a measure on such that

() C2(U), and GS on U.

PROOF. Let {Uj be an increasing sequence of open sets th compact closures

K.3 U.3 = U such that Uj + U. Each set Kj has a capacitary distribution ieh

denote by j. Now C2(U) lira C2(Kj) lira Bj (Kj). Since C2(U) < -, the measures

j are uniformly bounded. ere must be a subsequenee of the sequence j which we

can assu to be the sequence itself and a measure such that

_fd j ifd,
U U

for every function f continuous on U.

We claim that B has support in . If not, there is a compact set S CU,
S O $, such that (S) > O. To get a contradiction, take a non-negatlve function

f continuous on UI equal to on S and equal to 0 on 8U. for j sufficiently large.

Then i fd (S) > O. Since each j is supported in j i f dj 0 for
U U

sufficiently large j. This is contradiction.

If x U, then xU. for all j sufficiently large. Using continuous functions

with compact support to approximate GS, we see that GSj(x) Gs(X) as j By

the definition of a capacitary distribution GSj(x) for sufficiently large J;

hence Gs(X) I. e proof is complete.

DEFINITION 3.4. A set Z is a polar set if there is an open set U Z and a

function u superharmonic on U such that {z: u(z) + Z.

e next t lemmas will be useful in proving that a certain C
2 capacity series

converges.
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LEMMA 3.3. Let v be a measure having support F D. If GD
) a on F except

possibly for a polar subset of F, then F) aC2(F).
For the proof see [I, p. 219].

LEMMA 3.4. If v is a finite measure on D such that v GD is finite at 0, there

is a constant depending only on such that

f GD(Y,z)dx) a

DA(J-I, j+2)

for all y D A[J, j+l].

PROOF Since GD(Y,Z) -logly-zl, we may prove the lemma by proving the

inequality with G
D replaced by -logly-z By Lemma 3.1. there is a constant b,

independent of j 3, such that

D\A(J-I, j+2) D\A(J-I, J+2)

< -b flog2[yldy) + (log2) v(V)

DkA(J-I, j+2)

-b log21yldy) + (log2) (D)
D

for all z&D A[J, j+l]. Since we have assumed that - log2[yldv(y) is finite, we
D

can take a -b f log2[yld(y) + (log2)(D).
D

4. THE MAIN THEOREM.

Let E be compact The property of being a BPE on R2(E) is local property and

is invarlant under translation In stating our theorem about an arbitrary point x E,

we my therefore assume that E C {Z: zl < d/}= D and that x =0. We will combine

Theorem 3.2. with ideas of Wiener and Brelot to prove:

R2THEOREM 4.1. The point 0 6 E is a BPE on (E) if and only if there is a function

u superharmonic in D such that u(O) < =, and

y D\E

R2PROOF Suppose that 0 E is a BPE on (E).

Then by Theorem 3.2.

[ "C(n\) < -.

Let {n be a sequence of positive numbers such that

22n1% <(R)-
n=l

For each n > let U
n

be a nonempty open subset of D containing An E such that

U D and the following conditions hold:n
(i) Un 1:[[ < n+2 * and

C2(Un) < C2(An\E) + n



456 E. WOLF

Then 22nc2(Un <
n=2

We will obtain the required function u as the limit of a sequence of superharmonlc

functions. Let G denote the Green function for D. By Lemma 3.2. there is a

measure n with support in 3U
n such that

Bn(Jn) C2(Un), and Gnffi on Un.
We have

G%(O)-- G(O,z)din(Z)-- -log2{z}dln(Z)
u Un n

g (n+l)(log2) Vn(n)

(n+l)(log2)2(Un).
m

For m > I, define u . 2
m

nffi2

2n+2 -I((n+l)log2) Gn. By a remark in Section 2

the u tend to a function u that is superharmonlc in D and satisfies u(O) <m
Since Gn

on Un An\ E,

u > 22k+2 ((k+1)log2) -1 on U A\E C\En

for each k > 2 Thus

yD\E

Now suppose there is a function u superharmonic in D such that

u(0) < and

y D\E

The function u is lower semi-contlnuous on D; hence we may assume by taking a smaller

D if necessary that u is positive on D. Moreover, the Rlesz Decomposition Theorem

implies that u= G + h where is a measure supported on D, and h is harmonic in D.

Since h is bounded, we may assume that uffi G. By Theorem 3.2. it suffices to show

that
[ 22nC2(An\ E) <

For n > 2 consider the open sets

22n

Un {z: u(z) > nlog2 An\E

and the sets V
n

Un
( (An\E). Since V

n An\E, it suffices to show that. 22nc2(vn) <
nffi2

Let K
n

be a compact subset of Vn such that

C2(Kn) > C2(Vn)- n
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Then it is sufficient to prove that

22nC2(Kn) < (R).

n-2

One way to prove that this series converges is to prove that. 28n+2 C2 (K4n+ ) <

for =0, I, 2, and 3. We will do this for - 0; the 3 other cases are similar.

Let K be the compact set defined by K- U K U {0 }. Let w- Since
n>2 4n

u(0) > (0)ffi w(0), w(0)< Now w is the Green potential of a measure v wlth
support in K[I, p. 135]. We note that (D \ K4n 0 because w(0) < For each
n 2

w G(.,z)d(z) + f
K4n K4mmn

provided we can show that the sets K4n n > 2, are disjoint.

Since V4n A4n,
c 2-4 -2 < I’-I <

{z: 2-4n-3 < 2-1 zl < 2-4n}
Suppose that mn. Then

K4mC:[z: 2-4m-3 < 2-11-I 2-4m}
If mffin+k with k > 0, then

2-4m 2-4n-4k < 2-4n-3 and

K4m-D\ {z: 2-4n-3 < 2-11z[ < 2-4n}.
If mfn-k with k> 0, then

2-4m-3 2-4n+4k-3 > 2-4n and

K4m6_ D\{z: 2-4n-3 < 2-lffil < 2-4n}.

for all y6D A4n
Thus

In either case K4mD\A(4n-I 4n+2). The sets K4n n > 2, are disjoint.

Since U K4mDA(4n-I 4n+2), Lemma 3.4. implies there is a constant /3 depending

only on such that

f G(y,z)d(z) /3
U K4m

w(y) < /3 + f G(y,z)d(z)

K4n

for all y D A4n. The functions w and u are equal on K except perhaps for a polar

set ZC K. Thus
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y. K\Z

Choose an integer N such thato
28n

4nlog2 > B for n No

Then f G(y,z)du(z)-
Hence

K4n
LEMMA 3.3.

2
8n

4nlog2 for all Y6K4n\Z and n N Byo

28n

v(K4n) nlog2 6)C2(K4n for all n No
28n" nv(K4n) (4n12 BC2(K4n)"

n>N nN
o o

nC2(K4n) converges because the hypothesis on u implies that theThe series

complement of E is thin at 0, and Theorem 3.1. applies. It remains only to show that

the series . nv(K4n) converges.

Now

-flog21z[d(z) . f -log2[zld(z)
nffi2 K4n. (4n-1)(log2)(Kn).

n2

Note that

Thus the series . (4n-1)log2v(K4n) converges, and so does the series nv(K4n).
This completes t2proof, n=l
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