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ABSTRACT. Existence-uniqueness theorems are proved for continuous
solutions of some classes of non-linear hyperbolic equations in
5ounded and unbounded regions. In case of unbounded region, certain
conditions ensure that the solution cannot grow to infinity faster
than exponentially.
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I. INTRODUCTION.

In this paper we study the existence of a unique solution to
some non-linear partial differential equations of hyperbolic type.
These equations appear in a mathematical model for the dynamics of

gas absorption [i], and the main interest is to find solutions
of exponential growth to a non-linear hyperbolic equation with
characteristic data. It is possible to investigate such problems by
the method of successive approximations, after reducing the

differential equation to a Volterra integral equation in two
variables. However, here we use the method of equivalent (weighted)
norms, which considerably reduces the volume of computations. It
should be noticed that in [i], an asymptotic investigation of

corresponding linear equations has been conducted as tm. Periodic
and almost-periodic solutions of a similar class of non-linear

hyperbolic equations have been studied in [2]. The method of
successive approximations has been applied in [3] and [4] to find
bounded solutions of non-linear hyperbolic equations with time
delay, which arise in control theory and in certain biomedical
models.

We consider the equation

Uxt(X,t F(x,t,u(x,t),Ux(X,t)), (i)
and pose for (I) the following initial and boundary conditions:
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u(0,t) u0(t); 0 < t < T
u(x,0) (x) 0 < x < t (2)

where u0(t and e(x) are given functions in the domain
A [0,6] [0,T], and we are interested in existence-uniqueness
to problem (1)-(2).

Two norms llxIl, IIxll,on a Banach space are called equivalent if

there exist two positive numbers p and q such that

For example, if. the function x(t) belongs to the space of

continuous functions on [0,T], it is easy to see that the norms

IlXl[ max
0t<T

and

-Lltllxll, max e Ix(t) l, L1 > 0 (3)
0tKT

are equivalent. In order to prove the existence of a unique
continuous solution to our problem, we use a norm similar to (3)
and choose L1 so that a certain integral operator becomes a

contraction.

2. MAIN RESULTS

We prove our first result for equation (i) with the initial
and boundary conditions (2) as follows.

THEOREM i. Assume the hypotheses:
(i) The function u0(t is continuously differentiable on [0,T]

and e(x) is continuously differentiable on [0,6].

(ii) The function F(x,t,u,v) is continuous in A 2 and

satisfies the Lipschitz condition

for u, v, u, v e uniformly with respect to x, t.
Then poblem (i)-(2) has a unique continuous solution in A.
Proof. We change equation (i) to

u(x,t) u0(t)+(x)-(0)+ F(,,u(,),u(,)) dd (4)
0 0

and introduce the operator

Aw(x,t) u0(t)+(x)-(0)+ F(,,w(,),w(,)) dd (4’)
JOJ0

on the space CI(A) of all functions w(x, t) continuously
differentiable in A.

We define a weighted norm in CI(A) by the formula:

w II. max e w(x,t) + Wx(X,t) (5)

where the constant L1 > 0 will be chosen later. Since u0(t), e(x),
are continuously differentiable and F(x,t,u,v) is a continuous



SOLUTIONS OF NON-LINEAR HYPERBOLIC EQUATIONS 541

function of its variables, operator (4’) maps CI(A) into CI(A)
C
1Now, we want to show that A is a contraction on (A). Consider

the difference

Aw(x,t) Aw(x,t)

F(,,w( ),w (,))-F(,,w( ),w ( )) dd
0 0

for w, w E el(A) and apply the Lipschitz condition, then

Aw(x,t)-Aw(x,t) < L w(,)-w(,) + w(,)-w(,) dd
0 0

Consider the derivative of Aw(x,t) and Aw(x,t) with respect to x,
then

(Aw(x,t)) (Aw(x,t))x x

< F(x,,w(x,),Wx(X,))-F(x,,w(x,),wx(x, )) d
0

I t ]< L w(x,)-w(x,) + Wx(X,)-Wx(X, d

0

From here,

-Llt (Aw (x t))e Aw (x, t) -Aw(x, t) + (Aw(x, t) )x
x t

< L I I e-Ll(t-)e-Ll[ w(,)-(,) + w(,)-(,) ]dd
0 0

t

+ L I e-LI(t-)e-LI[ w(x,)_(x,) + Wx(X,)_x(X,) ] d
0

Ix;t -Ll(t-) II I t -Ll(t-)
< L w w , e d d + L w w , e d

0 0 0

L1 * L1 *

L (6 + i)
thenIf we pick L1 > L(t+I) and define q

L
1

with 0 < q < i. This shows that the operator A is a contraction
and proves the theorem.

The following proposition concerns the solution behaviour of an
equation linear with respect to u (x,t) in an unbounded region as

x
t. Although this result is generalized in Theorem 3, its

proof is given for instructive purposes.
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THEOREM 2. For equation

Uxt(X,t + a(x,t)Ux(X,t f(x,t,u(x,t)), (6)
and the initial and boundary conditions

u(0,t) u0(t); 0 < t <

u(x,0) (x) 0 X < 6 (7)
assume

(i) a(x,t) is continuous in n [0,] [0,m) and satisfies

the condition a(x,t) 2 m, where m is a constant, the

function e(x) is continuously differentiable on [0,].

(ii) The function f(x,t,u) is continuous in n and

satisfies the Lipschitz condition

I(x.t,u) f(x,t,v) < L Is- v

for u, v 6 , uniformly with respect to x, t; the function

f(x,t,0) satisfies the inequality

f(x,t,0) < K
1

eLlt

where (x,t) e , K is a constant, and
1

L1 > L6 m. (8)
(iii) The function u0(t is continuously differentiable on [0,m)

and satisfies

L t
1

u0(t) < K
2

e

for t e [0,m), K
2

is constant, and L
1
satisfies (8).

Then problem (6)-(7) has a unique continuous solution u(x,t) in n
and

-Lltsup e lu(x,t) < m.

Proof. First, transform equation (6) to

x
0
a(,) d

u(x,t) u0(t + e() e d
0

t

+ e ;a(’)df(E,,u(,)) dd (9)
0 0

and introduce the operator

x 0a(,)d
Aw(x,t) u0(t + e() e d

0

]’x/t ta-n (, )d
+ e f(,,w(,)) dd (i0)

0 0

on the space B(n) of all functions w(x,t) continuous in n, with the

norm
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-Lltsup e lw(x,t) l, L1 > 0. (Ii)

Now we prove that the operator (i0) maps B(n) into B() Indeed,

x 0a(E,)d
Aw(x,t) u0(t + e(E) e dE

0

I’xI t ta
+ e I (’)d[f(,,w(,)) f(,,0) dd

0 0

+ e
I (’)df(,,0) dd

0 0

and from the hypotheses of the theorem, we can write

-Llt -Lltl(x) K, e If(x,t,0) < K
1

e u0(t) K
2

Hence, by virtue of Lipschitz condition (L), we obtain

-Llte Aw(x,t) K2+ K6e (Ll+m)t

+ L e-(m+Ll) (t-)e-Ll [w(E )[ ddE +
0 0

m + L1
Taking into account (ii) this implies

e Aw(x,t)] K2+ K6 + +LIj
+ L w ll,, e-(m+Ll) (t-)

0 0

Therefore,

K
1

As [** K
2

+ K +
m+LI

)6 +
m + L1

w **
From here we see that if w [** is bounded, then As [** is

bounded, which proves that A maps the space B() into itself.

Now, we evaluate Au Av for u, v 6 B()

]
m + LI +mim l-e

(m+LI)T

Since the above limit is i, one can write

As Av ,, L
u v ,,

m + L1
which shows that A is a contraction on and proves that problem

(6)-(7) has a unique continuous solution in n which is bounded in

the sense of no (ii).

THEOREM 3. Assume for problem (1)-(7) the following hypotheses:

(i) The function u0(t is continuously differentiable and

eLlt for t e [0,) where K is asatisfies [u0(t) K
2 2

constant, and e(x) is continuously differentiable on [0,].

(ii) The function F(x,t,u,v) is continuous in n x 2and satisfies

Lipschitz condition (L), uniformly in x, t.

ddE.
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(iii) The function F(x,t,0,0) satisfies

IF(x,t,O,0) < K
3

eLlt,
K
3

is a constant and L1 > L(t+I), where L is Lipschitz

constant.

Then problem (1)-(7) has a unique continuous solution u(x,t) in n

and

-Lltsup e lu(x,t) <

Proof. We reduce (i) to (4) and introduce the operator (4’) on the

1
space C (n) of all functions w(x,t) continuously differentiable in, with the norm

-Llt [ ]W I;, sup e w(x,t) + Wx(X,t (12)

First, we prove that the operator maps CI() into CI() Indeed,

Aw(x,t) u(t)+(x)-e()+J0 0
F(,n,w(,n),wE (,n))-F(,n,0,0) dDd

x t+I I F(,,0,0) dd
0 0

and

[w(x,t)]

Hence,

t
’(x) + I [(x,,w(x,),Wx(X,)) (x,,0,0)] a

0

It F(x,,0,0) d+
0

w(x t) + [w(x t)]x u (t)

[w( J+lw(,,)l o o+ L
0 0

It[+ , lw(x,t) l+lWx(X,t)l a +
0

Multiplying the previous expression by e

t

0
IF(x,D,O,0) dD

-Llt, we have

< e-Llte IAw(x t)l+IAw(x t)Ix u
0
(t) Llt+ e-

-LIt [ L1 (t-)+ e I’ (x) + L e- e-Ll w(,) l+lw (,)I dd
0 0

Ixlt -LI(t-])e-LI]IF( ],0,0) d]d+ e
0 0
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+ e-Ll(t-)e- lw(x,)+Wx(X,)l d
0

t
e-L1 (t-tl)e-LxV F(x, V O,O) dV

If we let e le(x)-(0)l+le’(x)l < K
1

and take into account

then

-L1 (t-D) 1
e d <

0 L1

-Llt I A(x,t) [w(x,t)] x
Lt

+

+ L * LI
Therefore,

+ K (&+l) L(&+I)
L1 L1

which proves that the operator (4) maps CI() into CI(), For

the proof of contraction, we simply repeat the corresponding

computations of Theorem i.
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