Internat. J. Math. & Math. Sci. 459
VOL. 12 NO. 3 (1989) 459-462
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ABSTRACT If G is embedded as a proper subgroup of X in the Cayley representation of G,
then the problem of "if Nx(G) is always larger than G " is studied in this paper.
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Let R be the Cayley representation (i.e., the right regular representation) of a group G given
by R(g) = (z’,) forall g € G and z € G. Under the mapping R, the group G is embedded into
a subgroup R(G) of the symmetric group Sg, the group of permutations on the set Q consisting
of the elements of the group G . We identify R(G) with G and say that G is a subgroup of Sq.
The centralizer of G in Sq consists precisely of the elements of the form (%) . (See Lemma 1.)
In particular, if G is abelian then G is self centralizing in Sq. Also, the normalizer of G in Sg
isequal to G - Aut(G) where Aut(G) is the full automorphism group of G (see Lemma 2).

Suppose that the group G is nonabelian. If X is a subgroup of Sq, containing a permutation
of the type (;::) for sme g € G — Z(G) such that the property

Gs X< 8 (*)

holds, then it follows that Nx(G) contains G properly. However, it is easy to see that any element

of Sqg which normalizes G is not always a permutation of the form (;; .

When the group G is abelian, the permutations () allliein G andso G is self centralizing
in Sq. In this way one cannot find a group X satisfying (*) by the above method. However, P.
Bhattacharya [1] proved that if G is any finite, abelian p group satisfying (*) then Nx(G) > G.
P. Bhattacharya and N. Mukherjjee [2] also prove that if G is any finite, nilpotent, Hall subgroup
of X satisfying (*) and the Sylow p subgroups of G are regular for all primes p dividing the
order of G, then Nx(G) 2 G . In other words, that X must contain an element of the outer
automorphism group of G'.
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In this paper we will prove thatif G is any abelian Hall subgroup of X, satisfying the condition
(*) then G § Nx(G). We will also give an example to show that the condition of being Hall
subgroup is necessary in the above theorem. We will also show that if G is any nilpotent, Hall
subgroup of X satisfying the condition (*) and the Sylow p subgroups P of G do not have a
factor group that is isomorphic to the Wreath product of Zp1 Z, then G § Nx(G). In particular
it follows that if G is any finite p-group and does not have a factor group isormophic to Zp 1 Zp
then G £ Nx(G) [i.e., the condition being a Hall subgroup is not necessary]. As a corollary it
also follows that if G is any regular p-group satisfying the conition (¥) then G s Nx(G). We
will give an example to show that the condition of G having no factor group isomorphic to Zp1 Z,
is necessary.

Lemmal. Let R be the right regular representation of a finite group G and L, the left regular
representation of G. Under the mappings L and R, the groups L(G) and R(G) are subgroups
of Sq and Cs,(R(G)) = L(G).

Proof: Let (1) € R(®, (5;) € L&)
(2) () = () (i) = G2)

(z)(hz) (z)(a:)
hz) \hzg hz) \zg/ "
Hence L(G) C Cs,(R(G)).

Now suppose (7) € Sq and (J) centralizes R(G). So (:g) (2) = (;) ((::y) = ((z’;)f)
and (2)(Z) = (2)(Z) = (5)-
Since (%) € Cs,,s0 2'g = (zg)' forall z,9 € G.

Hence 7’ = (zg)'g~!. Nowplugin g = z7'. So 2’ = 1'-z. Thus (%) = (,7,) € L(G).
Hence Cg, (R(G)) = L(G).

Lemma 2: With the same notation as in Lemma 1, we have N (R(G)) = R(G) - Aut(G).
Proof: Let (7) € Aut(G) then (J) € Sq,

() GG -OCE
(o) - (:;') - (:y) € R@.

Hence Aut(G) C Ng,(R(G)). Conversely, let () be an arbitrary element of N, (G). Let
a=1.5% (,7:) € R@.Let 0 = (Z)(,Z+). So O sends 1 to 1. Now (z%)—l(;)(z’é) €
RG). S0 () (Z)(20) = (Zye) = (5 since it liesin R(G), ie., @g)° = 2°-¢".
Plugin z = 1, weget g* = ¢ = (z9)° = 29.9% = 0 is an autormophism of G =

N5, (R(G)) = R(G) - Aut(G).

Lemma 3: Let G be any finite group satisfying the condition (*). Then forany a € Q
() GN X, ={e}.
i) X =G Xq
(i) X4 iscore free, i.e., it does not contain any non-identify normal subgroup of X .

Proof: Recall that here G is identified with R(G) in G < X < Sq. Since R is the right
regular representation of G, so R(g) doesnotfixany o € Q exceptwhen g = e.So GNX, =
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{e}. Also X acts transitively on Q, | X |=| Q |=]| G |. Now [X : X,] =| X |=| G |.
So X = G- X4. For part (iii) suppose NaX and N C X,. So N C Ngexz ' Xaz,ie.,
if n is an arbitrary element of N, then n can be written as n = z~luz forall z € X and
some u € X,. Here u dependson z,ie., z-n = u-z or o®® = a%* = aF since u fixes
a,ie., n fixes o forall z € X, but X acts transitively on Q = n fixes every element of
X=>n=e=> N = {e}.

Lemmad: (Core Theorem): Let H beany subgroupof G with [G : H] = n. then G/core H
is isomorphic to a subgroup of S, where core H is the largest normal subgroup of G which is
contained in H .

Proof: Let Q be the set of distinct right cosets of H in G, i.e.,

Q = {Hg1,Hg,...,Hgn}. Then the mapping ¢ defined by a(g) = (}f{gg;) is a transitive
s

permutation representation of G of degree n with Kernel of ¢ = core H .

Theorem 5: Let G be a finite abelian, Hall subgroup of X, satisfying the condition (*). Then

Nx(G) 2 G.

Proof:  Suppose the result is false, i.e., there exists a subgroup X of Sq satisfying G g X <

Sq and Nx(G) = G. Amongst all subgroups of Sq containing G property, pick X to be

smallest. In other words, G is a maximal subgroup of X . Let |G| = p',p3?2,---,pf* with p;

distinct primes. Let P; be Sylow p; subgroups of G for ¢+ = 1,2,...,t. Since G is a maximal

subgroup of X, so Nx(P;) = G or Nx(FP;) = X. Renumber the p;’s if necessasry and say

Nx(P) = G fors = 1,..., and Nx(P;) = X fors = £+1,...,t. Fors = 1,...,¢,

Nx(P;) = Cx(P;) = G. So by Bumnside Lemma X has a normal p; complement. For j =

L+1,...,t, PjaX = Cx(Pj)) « X G C Cx(Pj) = Cx(Pj) = X = Nx(Pj). So X has
t

a normal P; complement M; forall ¢ = X, = [) M;, X, 4 S which is a contradiction to
i

Lemma 3. '

In the case where G is abelian, but not Hall subgroup of X, the result is not true as illustrated
by the following example.

Example6: Let X = Z3 x S; = (a) x (b,e|b® = c? =1, ¢ 'be = b71).

Let G = Z3 x Z; = (a) X {c) ~ Z¢.Let H be the subgroup of X of order 3 generated
by the ordered pair (a,b). Then H is not normal in X since (e,¢) does not normalize H. So
H is core free, of index 6 in X. By Lemma4, G § X < S¢. Now G is abelian, not Hall
subgroup of X and Nx(G) = G.

Theorem 7: Let G be a finite, nilpotent, Hall subgroup of X, satisfying the condition (*).
Suppose that the Sylow p subgroups P of G do not have a factor group isomorphic to the Wreath
product of Z, 1 Zp for all primes p dividing the order of G. Then Nx(G) > G.

Proof:  Suppose the result is false, i.e., there exists a subgroup X of Sp satisfying G § X <
Sq and Nx(G) = G. Amongst all subgroups of S containing G properly, pick X to be
smallest. In other words G is a maximal subgroup of X . Let | G |= p{" - p3%- ... - p{*, here
p; are all distinct primes. Since G is nilpotent,so G = P; X P, X ... x P, where P; are Sylow
p; subgroups of G. So we have either Nx(FP;) = G or Nx(P;) = X. Renumber the p;’s if
necessary and say Nx(P;) = G fori =1,...£ and Nx(P;) = X fors = £+1,...,t.

Let us look at the case 1+ = 1,...,£. We have N = Nx(P;) = G. By Yoshida’s transfer
theorme [3], X has normal p; complement M;.

Let M =N, M;. So p; }|M|fori=1,...,¢. Nowfor j = £+1,...,t, Nx(P)) = X.
So P;j 4 X which implies that Cx(P;) 4 X and PjCx(Pj)<9X and G C P; - Cx(P;) =
P;Cx(F;) = X.
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Fora € Q,byLemma3 X = G-Xa; GNXa =1, (G|,| Xa)=1= Xoa C
Cx(P) N M = Xo C Cu(P)) for j = L+1,..,t. | M |=pii' ...pf* - |Xa|l =
XoAM = X, is a characteristic subgroup of MAG = X,AG, which is a contradiction to
Lemma 3.

As an immediate corollary to the theorem, we get the result of P. Bhattacharya and N. Mukher-
jee [2].

Corollary 8: Let G be a finite, regular p subgroup of X and satisfies the condition (*), then
Nx@G) 2 G.

Proof: If G isnota Hall subgroup of X then G is propertly contained in a Sylow p subgroup
of X andso Nx(G) 2 G. So we can assume that G is a Hall subgroup of X. Now G being a

regular p group => G does not have a factor group isomorphic to Zy? Z,. So Theorem 7 proves
the result.

Corollary 9. Let G be a finite, nilpotent, Hall subgroup of X, satisfying the condition (*).
Suppose further that Sylow p subgroups of G are regular for all primes p dividing the order of
G then Nx(G) 2 G.

Corollary 10: Let G be afinite p group, satisfying the condition (*). Suppose that G' does not
have a factor group isomorphic to Zp1Zp, then G 5 Nx(G).

The condition that the Sylow p subgroups of G in Theorem 6 have the property that it has no
homomorphic isomorphic to Z, 1 Z, is necessary. Se example below.
Example: Let X be the simple group of order 168. Let G € Syl2(X). Then G = 2,1 2

so G is nilpotent, Hall subgroup of X . Since H = the normalizer of a Sylow 7 subgroup has
index 8, soby Lemma 4, G C X C Sg,i.e., G satisfies the condition (*) but Nx(G) = G.
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