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ABSTRACT In this note we define and discuss some properties of partition of unity on
*—inductive limits of topological vector spaces. We prove that if a partition of unity exists
on a *—inductive limit space of a collection of topological vector spaces, then it is
isomorphic and homeomorphic to a subspace of a *—direct sum of topological vector spaces.
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1. INTRODUCTION

M. De Wilde [1] introduced the concept of partition of unity in an inductive limit
space of a family of locally convex spaces which extends the usual partition of unity in
function spaces. Around the same time S.0. Iyahen [2] introduced *—inductive limits of
topological vector spaces, not necessarily locally convex, as a generalisation of inductive
limits. In this paper, we consider the notion of partition of unity in *—inductive limit
spaces of topological vector spaces and obtain some useful results some of which are
analogous to De Wilde’s results in [1]. In section 2, we briefly discuss the well-known
concept of F—semi—norms in topological vector spaces. The details may be found in [6]. In
section 3, we define the concept of partition of unity in *—inductive limit and using this,
obtain a family of F—semi—norms defining the *—inductive limit topology. Finally we
conclude with a representation theorem of *—inductive limit space with a partition of
unity.
We prove that if a partition of unity exists on a *—inductive limit space of a collection of
topological vector spaces, then it is isomorphic and homeomorphic to a subspace of a
*—direct sum of topological vector spaces.
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2. F-SEMI-NORMS

Let E be a vector space over k where k is the field real or complex numbers.
DEFINITION 2.1

An F—semi—norm on E is a mapping v : E- R such that

(1) Yx)> 0for all x€ E;

(it) Ax) < Yx) for all x € E and for all |A|< 1;
(iii) Ux+y) ¢ Yx) + y) for all x, y € E;

(iv) for each x € E, v(Ax)~ 0 as 1 - 0.

Suppose that V = {v o Q€ A} is a family of F—semi—norms on E. Then V determines a

linear topology 7 on E. A base of n—neighbourhoods of the origin in E consists of sets of
the form
U

v 'v_ v

e = {xe E: Va_(x) <e¢j=12,..k}
o j

n

, v is any finite subcollection of

o Ve

V. Also, it is clear that each v o€ V is n—continuous and 5 is the topology on E

where ¢ is an arbitrary positive number and v a?
1

determined by the family Q of all p—continuous F—semi—norms on E. In fact, an
F—semi—norm u € Q if and only if, for each ¢ > 0 there exists a § > 0 and a finite collection
v _ of V such that

r/al, Va2, Ve
U, ’Va2’ '""Van’ s € {x: w(x) < €}

Conversely, we have the following:

THEOREM 2.1
A vector space topology on E can always be determined by a family of F—semi—norms.
Proof: see [6], chapter 1, Proposition 2.
3. PARTITION OF UNITY:
Let (E, ) be the *~inductive limit of a family of topological vector spaces (E;, 7;) i€ I, an

index family, relative to linear maps L Ei -+ E. Suppose further that the index set I is

directed and that for each pair indices i, j ¢ I withi < j, there is a continuous linear map

I Ei-» Ej such that y=u

J o Ve

jo i
DEFINITION 3.1 A partition of unity on E is defined to be a family of linear maps
(T,) (i€ I), T, : E~ E;, which satisfies the following conditions.

(1) T;ou ; is continuous for each pair (i—j).
(ii) For each je I, Ti"uj = 0 except for a finite number of i € I.
(iii) z u,oT, is the identity map on E.

iel

Remark: We note that the condition (i) is equivalent to the following condition:
(i)  each T, : E~ E, is continuous.

Example 3.2 Suppose (E, 7) is the inductive limit of locally convex spaces (E;, 7;)

(i€ I) with {T;} (i € I) is a partition of unity of (E,7). Then since 7 is coarser than the
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*_inductive limit topology 7* on E, it follows that {Ti} (i € I) is also a partition of unity of

(E, 7%).
Example 3.3 Let {En} (n = 1,2,...) be a sequence of topological vector spaces, E be

the *—direct sum of the E_’s as defined in (2], and let {P } (n = 1,2,...) be the projection
N

maps of E onto E . Then, E is the *_inductive limit of the sequence { @ Ei}
i=1

(N'=1,2,...) and the maps {P_} constitute a partition of unity.

We now consider some properties of the *~inductive limit space (E, 7) with a
partition of unity {T;} (i € I) but first some notations.

For each i€ I, let Pi be a family of F—semi—norms on Ei' Then Pi determines a linear
topology 7, on E; and let Q, = {v‘il ta €T} be the family of all r,—continuous
F—semi—norms on E,. For each collection s of F—semi—norms {vti1 : v?‘ € Qi} (i€ I) and
each set ¢ of positive real numbers {ci} i€ I, we define a non—negative real—valued

function 15 on E by the equation

1: (x) = zl,c u (Tyx) forxe E. (3.1)
1€

It is easy to verify that Is is a well—defined, F—semi—norm on E. By Il we denote the
family of all such F—semi—norms r? for every collection of 7 and s.

THEOREM 3.4 The *—inductive limit topology 7 on E is given by the family Il
of F—semi—norms 12 defined by the equation 3.1.

PROOF Let u be the linear topology on E generated by the collectionI We
have to prove that 7 = - We will do this in two steps. First, to prove that I is coarser
than 7, it is sufficient to show that each uj (E. T .) - (E, rp) is continuous. See [4]. Now
each Y is continuous, if and only if for any 1r ell, 78 o5 Ej - R is continuous

In fact, for each x ¢ Ej’

(00 = 2
T, (ujx) =& (TIqu)
But T1°uj is equal to 0 except for a finite number of indices i€ I.
Let J = {i€ I Tjou;# 0}

Now each T. ou is continuous from E into E and so zx (T, ouJ) is TJ—contmuous Thus we

can write 15 s u = Z 1 i ) and so 120 uJ is continuous. From that 1t follows
ieJ

that I Cr

For each x ¢ E,

o [

iel

< Z I/(lliTlX).

1€1
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Now vou, is a 7,—continuous F—semi—norm on E, and 50 belongs to Q;. Hence

Ux) < Z(Voui)(Tix)
= 1: (x).
Here s = {uoui} (ie I), and ¢; = Lfor eachi€ I. This implies that the identity map (E,
T]I) -+ (E, 7) is continuous and so 7 is coarser that T a8 required. This completes the proof.
COROLLARY 3.5 If each E; (i € I) is separated, then (E, ) is separated.
THEOREM 3.6 If B is a bounded set in E, then Tib = 0 except for a finite

number of indices i € I. Hence B is bounded in E if and only if there exists a continuous
linear mapping T from E onto some Ei such that B = uiTB.

The proof is analogous to that of the corresponding result in ([1}, p3) and so is omitted
here.
COROLLARY 3.7 If each {Ei} is sequentially complete, then E is sequentially

complete.
PROOF: Let {x_} be a Cauchy sequence in E. Then {x_} is a bounded set in

E, and so, by theorem 3.6, there exists a continuous linear mapping T from E into some Ei
such that {x } =u, T{x }.

Since a continuous linear mapping from one topological vector space into another takes
Cauchy sequences to Cauchy sequences, T{xn} is a Cauchy sequence in E;. Now Ei is

sequentially complete, and so T{x} converges to a point x say in E;. Therefore u; T{x_}
converges to u; X, since u is a continuous linear mapping. Therefore {xn} converges to a

point in E. Hence the result.
At present it is not known whether the completeness of each (Ei’ ri) implies the

completeness of {E,r). Lastly we prove that the collection of numbers in ¢ of H: can be

chosen in an economical way. An useful application of this is given in [4].
PROPOSITION 3.8 Let ¢’ = {c; : ¢;2 1}. IfII" denotes all F—semi—norms

of the form Hﬁ, for various collections of s and ¢/, then =T where 77 and ;, denote

the topology generated by I and I’ respectively.
PROOF It is obvious that I’ C I and so it is clear that Ul is coarser than Ut

Conversely let U be a rH—neighbourhood of the origin in E. Then V contains a set V of the
form

$ $
V={x¢eE: ran(x) < ¢n=12,..m; ¢ > 0} where ran(x)
n n

= Z ci(n) ,jii(n) (T,x)

Now let for any real number r, [r] denote the greatest integer < r then
W < M)+ 1

8
and if we denote ¢/ = {[ci(n)] + 1}, then it is easy to see that 10}1 (x) for all x e E. So we
n



PARTITION OF UNITY ON INDUCTIVE LIMITS 433

s
have U2 V2 V', where V/ = {x¢ E: L n(x) <gn=12,..m e>0}isa
n

Ul —neighbourhood of the origin. Thus we have ' is coarser than U and so =T

4. DIRECT SUM
In this section we give an analogue of a representation theorem given by D. Keim in [3].
Let (E, 7) be the *~inductive limit of topological vector spaces (E;, Ti) (i € I) relative to

linear maps u, = E; - E. Suppose, further that, a partition of unity {Ti} is defined on
(E, 7). Then we have the following representation theorem.
THEOREM 4.1 (E, 7) is isomorphic and homeomorphic to a subspace of a

*—direct sum of topological vector spaces.
PROOF: Define a linear map ¢ from (E, 7) into the *—direct sum of E/s as

follows:

$§:E- z E, given by #(x) = (T;x) for x€ E.
i€l

This mapping is well—defined and one—to—one since {T;} satisfies the conditions (ii) and

(iii) of partition of unity respectively. It is easy to check that ¢ is a linear map and so, is
an isomorphism. Moreover that & is continuous is shown as follows.
By condition (ii) of partition of unity, Ti°uj = 0 except for a finite number of i € I and for

each fixed je I. Leti R in be the finite number of indices such that Ti ol i= 0
k

12 igy ooe

fork =1,2,...,n. Thend,u. = (2 L oT; )ou, where L is the injection map of
J ' 'k

E. -~ ZE Now for each iy, k = 1,2,....m, L. ,T. ou. is continuous by condition (i) of
i, T A i, %7, 07
k i€l k 'k
partition of unity and continuity of each Ii ,k=1,2,..n. Therefore & ;u ; is continuous for
k

k)

each je I. Consequently ¢ is continuous [5], as required.

Conversely, let # be a linear map defined by ¢/ : z Ei - E
i€l
¥ (x) = E u;(x;).
Yooder M
This is well—defined since x; = 0 except for a finite number of i € I. Moreover, ¢’ is linear
and &’ | ¥(E) = L Also, §' oI, = u; is continuous from Ej" E for each
j€ L. Henced’ is continuous. Thus ¢ is an isomorphism and a homeomorphism from E

onto Ei'
iel
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