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ABSTRACT. Consider a sequence of independent random elements {Vn, n > in a real separable

normed linear space (assumed to be a Banach space in most of the results), and sequences of con-

stants {a,, n > and {ha, n with 0 < b, "[" oo. Sets of conditions are provided for

{an(V EVn) n > to obey a general strong law of large numbers of the form

aj(Vj EVj)/bn --> 0 almost certainly. The hypotheses involve the distributions of the
j=l

{V,, n > }, the growth behaviors of {a n > and {bn, n > }, and for some of the results

impose a geometric condition on X. Moreover, Feller’s classical result generalizing

Marcinkiewiez-Zygmund strong law of large numbers is shown to hold for random elements in a

real separable Rademacher type p (1 < p < 2) Banach space.
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1. INTRODUCTION.

Let (fl, F, P) be a probability space and let X be a teal separable normed linear space with

norm . I. It is supposed that X is equipped with its Borel o-algebra 8. That is, 8 is the o-algebra

generated by the class of open subsets of X determined by I. II. A random element, V in x is an

/:-measurable transformation from fl to the measurable space (X, 8). The expected value of V,

denoted EV, is defined to be the Pettis integral provided it exists. That is, V has expected value

EVE X if f(EV) E(f(V)) for every f X* where X* denotes the (dual) space of all continuous

linear functionals on X. The definitions of independence and identically distributed for random ele-

ments are similar to those in the (real-valued) random variable case.

Consider a sequence of independent random elements {Vn, n > }, all of whose expected

values exist. Let {a n > and {b n > be constants with 0 < b "1" **. Then

{an(V EVn), n _> is said to obey the general strong law of large numbers (SLLN) with norming

constants Ibn, n > 1} if the normed weighted sum E aj(Vi EVj)/bn converges almost certainly to

the zero element in X (denoted by 0), and this will be written

--, 0 a.c. (1.1)
bn

Herein, the main results furnish conditions on X, on the distributions of the {Vn, n > 1}, and on the

growth behavior of the constants {an, n > and {bn, n >_ which ensure that the SLLN (1.1)

obtains. In most of the results X is assumed to be a Banach space, and in many of the results

{V n > is assumed to be stochastically dominated by a random element V in the sense that for

some constant D <

P{ IV,,I > t} < DP{ IDVI > t}, > 0, n > 1. (1.2)

Of course, (1.2) is automatic with V V and D if the {Vn, n are independent and identi-

cally distributed (i.i.d.) and even in this case the results are new. In Section 3, SLLN’s are estab-

lished under geometric conditions on X whereas in Section 4, SLLN’s are established without such

conditions. The SLLN problem was studied by Adler and Rosalsky [1, 2] in the random variable

case, and some of those results will be extended to the random element case in the current work.

Taylor [3] provided a comprehensive and unified treatment of results under whose conditions

anjVj ---> 0 a.c. where {Vn, n >_ are independent, mean zero random elements in a real sepa-

rable normed linear space and {anj, < < n, n > 1} is a triangular array of constants. Some o: tbc
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arguments in Taylor’s monograph utilized a result of Rohatgi [4] which will now be stated.

(Rohatgi’s work generalized earlier work of Pruitt [5].)

THEOREM (Rohatgi [4]). Let {Xn, n I] be independent, mean zero random variables and
let X be an Lp random variable for some p > 1. Suppose that Xn, n > 1} is stochastically dom-
inated by X in the sense that

PI IXnl > t} -< P{ IXl > t], t>0, n>l.

Let {anj < j < n, n be constants satisfying lira anj 0 for each > lanjl O(1), and
j=l

max a,jl O(n-1/(1>-1)).
l<j_<n

Then anjXj --> 0 a.c.
j--I

In Theorems 8 and 9 and Corollary 2 of the current work, versions of some of the results

(1.3)

pr6sented in Taylor [3] will be obtained under less restrictive conditions but only for the case where

anj aj/bn, < j < n, n > 1, where {an, n > and {b,, n > are constants. The arguments will

not involve Rohatgi’s theorem but, rather, will employ Corollary below. Corollary plays a role

in the proofs similar to the role that Rohatgi’s theorem played in establishing the counterparts

presented in Taylor [3]. Corollary has less stringent conditions than Rohatgi’s theorem when

anj aj/b,, < n, n > 1. Specifically, if that choice of {anj, < < n, n satisfies (1.3), then

an
O(n-u(p-l)) (1.4)

bn
which is stronger than the condition

O(n-/p) (1.5)
bn

of Corollary 1. Thus, if {anj, < < n, n satisfies brian O(na) for some 1/2 < t < I, then to

invoke Rohatgi’s theorem requires that (1.4) and the moment condition E IX p < hold where

p > + __1 > 2, whereas to invoke Corollary merely requires that (1.5) and the (weaker) moment

1
condition E IX P < hold where 2 > p ---" _> 1. For example, for i.i.d, random variables

IX n > with EX1 0, the classical Ko.lmogorov SLLN Xj/n - 0 a.c. follows from Corollary

but not from Rohatgi’s theorem (which would require EX2 < 00).

A SLLN for normed weighted sums of random elements in a real separable Banach space has

been proved by Mikosch and Norvai’a [6], but theft result and the current ones do not entail each

other.
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For random elements in a real separable Banach space, the study of the SLLN problem dates

back to the pioneering work by Mourier [7] (see also Laha and Rohatgi [8, p. 4:52] or Taylor [3, p.

72]) wherein a direct analogue of the classical Kolmogorov SLLN was established. More precisely,

Mourier showed that ff IV n > are i.i.d, random elements in a real separable Banach space and

if El IVtl < *,,, then (Vj EVI)/n --> 0 a.c. (A new proof of Mourier’s SLLN has recently been
j=l

discovered by Cuesta and Matran [9].) For random variables, the Kolmogorov SLLN was general-

ized by the Marcinkiewicz-Zygmund SLLN (see, e.g., Chow and Teicher [10, p. 122]) which, in

turn, was generalized by Feller [11]. A random element version of Feller’s result is presented in

Theorem 4 below wherein it is assumed that the Banach space is of Rademacher type p (I < p < 2).

2. PRELIMINARIES.

Some definitions will be discussed and lemmas will be presented prior to establishing the main

results.

Let {Yn, n > be a Bernoulli sequence, that is, {Yn, n are i.i.d, random variables with

P{YI P{YI -I 1/2. Let X be a real separable Banach space and let

X X x XxX x and define

C(X) {v n > 1} X**" Ynvn converges in probability
n-1

Let < p < 2. Then X is said to be of Rademacher typ_e p if there exists a constant 0 < C < such

that

El l, Y.nvnlIP_<CEIIVnllP
n=l n=l

for all {vn, n > C(X). Hoffmann-Jdrgensen and Pisier [12] proved for < p 2 that a real

separable Banach space is of Rademacher type p iff there exists a constant 0 < C < such that

El z_,Vjl It’ < CT_., El IVil It’

for every finite collection {Vt V of independent random elements with EVj 0,

El IVjl It < ,,,, <jn.

If a real separable Banach space is of Rademacher type p for some < p < 2, then it is of

Rademacher type q for all < q < p. Every real separable Banach space is of Rademacher type (at

least) while the Lp-spaces and -spaces are of Rademacher type min 2, p for p 1. Every real

separable Hilbert space and real separable fmite-dirnensional.Banach space is of Rademacher type 2.

A normed linear space X is said to be Beck-convex if there exists an integer N > and a

number 0 < I < such that for all choices of {v vN} X with lvjll < 1, < < N,
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I1+ v __. :!: VNI < N(1-E)
for some choice of + and signs. This property has been extensively studied by Giesy [13]. A real

separable Banach space is Beck convex iff it is of Rademacher type p for some p > 1.

A _Schauder basis for a normed linear space is a sequence {1i, > 1} c g such that for each

v X there exists a unique sequence of scalars {ti, 1} such that

rn
lim tii=v. (2.1)

rn--*** i--I

A sequence of linear functionals {fi, > (called coordinate functional$ for the basis {i, > })

can be defined by letting fi(v) ti, :> 1, where v X and (2.1) holds, and a sequence of linear

functions {Urn m 2 (called partial sum operator for the basis {i, > }) can be defined by

Urn(v)- Z fi(v) i,
i=l

The residual operators {Qrn, m > are defined by

vX,m_> 1.

Qm(v) v Um(V), v , m > 1.

A Schauder basis is said to be a monotone basis if IUm(v) I, m > is a monotone sequence for

each v X.

A sequence of random elements {Vn, n > 1} in a normed linear space X is said to be (uni-

formly) tight if for each E > 0, there exists a compact subset Ke of X such that P{V Kt} 2 E

for all n > 1.

LEMMA (Adler and Rosalsky [1]). Let Xo and X be random variables such that Xo is sto-

chastically dominated by X in the sense that there exists a constant D < such that

Then for all p > 0

P{ IXol > t} < DP{ DX > t}, t>O. (2.2)

EIXolrrI(IXol < t) < DtPP IDXI > t} + Dp+IEIXIPI(IDXI < t), t>O. (2.3)

LEMMA 2 (Adler and Rosalsky [1]). Let IX n > 1} and X be random variables such that

{X n > 1} is stochastically dominated by X in the sense that there exists a constant D < such

that

P{ IXnl > t} DP{ IDXI > t}, > 0, n 1.

Let {ca, n 1} be positive constants such that [nax cff] ---1 O(n)for some p > 0 and
J jn cff

P{IXI > Den} < oo. Then for all 0 < M < -0,

n=l
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----" EIXnIP I(IXnl < Mca) <
n=l Cnp

LEMMA 3. Let Xo and X be random variables such that Xo is stochastically dominated by X

in the sense that (2.2) holds. Then

and

EIXolI(IXol > x) f P{ IXol > t}dt + xP{ IXol > x}, x > 0 (2.4)

EIXolI(IXol > x) _< D2EIXII(IDXI > x), x > 0. (2.5)

PROOF. Integration by parts yields (2.4), and then (2.5) follows immediately from (2.4) and

(2.2). Vl

LEMMA 4 (Adler and Rosalsky [2]). Let X be a random variable such that P{ IXI > t} is reg-

ularly varying with exponent p < -1. Then X Lp for all 0 < p < -p and

EIXII(IXI >t)=(l+o(1))
P+I tPIlXI >t} ast--->,,,,.

The next lemma shows that stochastic dominance can be accomplished by a sequence of ran-

dom variables having a bounded absolute p-th moment (p > 1).

LEMMA 5 (Taylor [3, p. 123]). Let {X n _> 1} be random variables such that

su El Pn>_ Xnl < for some p > 1. Then there exists a random variable X with E IxIq < for all

0 < q < p such that

PI IXnl > t} < P{ IXl > t}, > 0, n > 1.

Finally, a remark about notation is in order. Throughout, the symbol C denotes a generic con-

stant (0 < C < *,,) which is not necessarily the same one in each appearance.

3. SLLN’S UNDER PROBABILISTIC AND GEOMETRIC CONDITIONS.

With these preliminaries accounted for, the first group of results may be established. The ran-

dom elements are assumed to be independent, and geometric conditions are placed on the real sepa-

rable normed linear space. The space is assumed to be a Banach space of Rademacher type p (for

suitable p) in Theorems 1-7, and it is assumed to be Beck-convex ha Theorem 8. The next lemma is

the key lemma in establishing Theorems 1-4.

LEMMA 6. Let {Vn, n > 1} be independent random elements in a real separable, Rademacher

type p (1 < p < 2) Banach space X. Suppose that IVn, n >- 1} is stochastically dominated by a ran-
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dom element V in the sense that (1.2) holds. Let {a n and {bn, n :> be constants satisfy-

ing 0 < b T and

(3.1)

x-"z_,p{ lanV] > Dbn} < 0% (3.2)

then

Zaj(Vj- EVjI(I lajVjl < D2bj))
j=l -- 0 a.c. (3.3)

PROOF. Let

Cn- anl Yn VnI(llVnll < D2cn), n _> 1. (3.4)

Then for n >

aj(Yj- EYj)
[I p

(since X is of Rademacher type p)

o(1) (by Lcmma 2),

whence

EII -SI IP-- 0
=I bj

for some random clement S in X implying

n

X
aj(Yj EYj) p_. S.

j= bj
Since convergence in probability and a.c. convergence arc cquivalcnt for sums of indcpcndcnt ran-

dom elements in a separable Banach space (see It6 and Nisio [14]),

., aj(Yj- EYj)

implying via the Kronecker lemrna that

converges a.c.

X EV)

b -- 0 a.c. (3.5)
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However, P{lim inf IV Yn]} by the Borel-Cantelli lemma since (1.2) and (3.2) ensure that

P{Vn* Yn} P{llVnll > D2cn} < D , P{IIVIi > Dcn} < ,.
n=l n=l n=l

The conclusion (3.3) then follows directly from (3.5). D

In the first theorem, there is a trade-off between the Ra(lemacher type and the condition (3.6);

the larger the Rademacher type p, the condition (3.6) becomes less stringent (since bn/la ’).

THEOREM 1. Let {Vn, n 2 be independent random elements in a real separable,

Rademacher type p (1 _< p < 2) Banach space. Suppose that {Vn, n > 1} is stochastically dominated

by a random element V in the sense that (1.2) holds. Let {an, n > and {b n bc constants

satisfying 0 < b T ,,,,, bn/la T,

b -lajlP
-I an I’P jn’-jP O(n)’ (3.6)

and

lanl j__l’j O(n)"

If the series of (3.2) converges, then the SLLN

(3.7)

obtains.

Z aj(Vj- EVj)
--> 0 a.c.

PROOF. Define {c n > 1} and {Yn, n > 1} as in (3.4). Note at the outset that (3.7) ensures

that c < Cn, n > 1, and so for all > 1, by (1.2) and (3.2)

, PII IVjl > CD2n} < D , PII IVI > CDn}
n=l n=l

< D P{I IVl > DCn} < ,,,,.
n--’l

Thus, Ell Vjll < ,, >_ 1, and so (see, e.g., Taylor [3, p. 40]) Vj, > 1, all have expected values.

Also, c T by (3.6).

Next, (3.3) holds by Lemma 6 and so it only needs to be demonstrated that

ajEVjI(I]Vjl] > D2cj)

b
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To this end,

El IVnl II(I IVnll > D2cn)
n=l Cn

<_D2 _1 EIIVIII(ilVII >Dcn) (by (2.5))
n=l Cn

D2 .1 El IVI II(Dcj < IVII < Dcj+1)
n=l Cn j---n

j+l

< D2 El IVI II(Dcj < IVII < Dcj+l)
n=l Cn

< D3
cj+l PIDc < lVll < Dcj+) (by (3.7))

J=- cj+

< C jPIDcj < lVll < Dcj+}
j=l

C PIDcj < lVll < DCj+l}
j=l n=l

C E E PIDcj < lVll < Dcj+l}
n=l

C P{IIVII > Den} <** (by (3.2)),
n=l

whence by the Kronecker lemma

I aj EVjI(I IVjll > D2cj)l lajlEI IVjl II(I IVjll > D2cj)
j-I j-I o(1). l-I

REMARK. Apropos of Theorem 1, the authors are able to show through a slight modification

of the argument that the condition bn/lanl T can be replaced by the somewhat weaker condition

bn/lan O(inf bj/l aj I).

THEOREM 2. Let {Vn, n > be independent random elements in a real separable,

Rademacher type p (1 < p < 2) Banach space. Suppose that {Vn, n > I} is stochastically dominated

by a random element V in the sense that (1.2) holds, and suppose that El IVll < .,,. Let

lan, n > and Ibn, n > be constants satisfying 0 < bn ’1" **, (3.1), and

ajl O(bn).
j=l

If the series of (3.2) converges, then the SLLN

(3.8)

obtains.

bn
--) 0 a.c.
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PROOF. Define {cn, n > 1} and {Yn, n > 1} as in (3.4). Note at the outset that (1.2) guaran-

tees that Ell Vnll < , n 1, and so Vn, n 1, all have expected values. Now (3.3) holds by

Lemma 6 and so it only needs to be demonstrated that

aEVI( V > D2c)
j=l

--0.
bn

To this end, note that (3.1) ensures c -- -0, whence by (2.5), ElIVll < **, and the Lebesgue dom-

inated convergence theorem

II EVaI(I V II > D2Cn)l Ell V II I(ll V > D2Cn)
g D2EI IVI II(I IVll > Dcn) o(1).

But then by (3.8) and the Toeplitz lemma

II ajEVjI(IIVjll > D2c)II lajl lEVjI(IIVjll >D2cj)II

bn bn
o(). r

THEOREM 3. Let {V n be independent random elements in a real separable,

Rademacher type p (1 < p < 2) Banach slSacc. Suppose that {Vn, n > is stochastically dominated

by a random element V in the sense that (1.2) holds, and suppose that

P{I IVl > t} is regularly varying with exponent p < -1. (3.9)

Let {a n > and {bn, n > 1 be constants satisfying 0 < b ’1" and (3.1). If the series of (3.2)

converges, then the SLLN

obtains.

b
--) 0 a.c.

PROOF. Define {cn, n > 1} and {Yn, n > 1} as in (3.4). Now El IVII < by Lemma 4 and

so (1.2) ensures that Ell Val < 00, n > 1, implying that n, n > 1, all have expected values. Again

(3.3) holds by Lemma 6 and so it only needs to be demonstrated that

ajEVjI([ Vjl > D2cj)
J=l --) 0.

ba
To this end, it follows from (2.5), (3.1), and Lemma 4 that for all n > some no

El IVnl II(I IVnll > D2cn) < D2EI IVI II(I IVll > Dcn)
< CcnP{ IVI > Den}.

Then by (3.2),
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and so

----1 El IVnl II(I IVnll > D2cn) g C + C PIIIVII > Dcn) <
n=l Cn n

I1 ajEVjI(I IVjll > D2cj)ll lajlEI IVjl II(I IVjll > D2cj)
j=l S j=t o(1)

bn bn

by the Kronecker lemma. I"1

REMARK. Apropos of Theorems 1, 2, or 3, Example of Adler and Rosalsky [2] shows that

the Theorems can fail without the assumption (3.7), (3.8), or (3.9), respectively.

The ensuing lemma can be helpful in verifying the conditions (3.6), (3.1), (4.6) of Theorems 1,

2, 3, or 11, and it will be used in the proof of Theorem 4.

LEMMA 7 (Adler and Rosalsky [1]). Let {Cn, n > 1} be constants with 0 < cnP/n "1" for some

p > 0. Then

iff

lim inf
cpm

> r for some integer r > 2.
tl--- cP

The next theorem is a random element version of a classical result of Feller [11 which had

extended the Marcinkiewicz-Zygrnund SLLN to more general norming constants.

THEOREM 4. Let {Va, n be i.i.d, random elements in a real separable, Rademacher type

p (1 < p < 2) Banach space and let {bn, n > 1} be positive constants. Suppose that either

bn bn(i) EVI=0, ,1,, ---’1’ for somex>--
n na p

or

(ii) E V) **, "I’.
n

If

P{IIVIII >bn} <*,,, (3.10)

then

j=l

bn --* 0 a.c. (3.11)
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PROOF. In either case b "r and blain ’. Now bn/nI " where ot in case (i) and I in

case (ii). Thus,

and so by Lemma 7

b’n (2n)lP 2Ip 2,liminf--- >liminf >
n-oo- bnP n-- nlP

Then by l..emma 6

bnP Z O(n).

(Vj EVjI(I IVjll _< hi))
j=l Oa.c.

bn
In case (i), bn/n ,l, and (3.10) entail (scc Chow and Tichcr [10, pp. 123-124])

(3.12)

j=l < j=-I o(I)
b bn

which when combined with (3.12) yields (3.11) since EV 0.

In case (ii), in view of (3.10), necessarily bn/n ’l" and so (see Chow and Teicher [10, pp.

123-1241)

II EVjI(I IVjll < bj)ll
j=l

b.
yielding (3.11) via (3.12). v!

o(1)

REMARK. In the special case where EV 0, EI VI q < for some < q < p < 2, and

b nl/q, n > 1, Theorem 4(i) reduces to the Marcinkiewicz-Zygmund type SLLN

Vj/n
I/q 0 a.c. of Woycz’yfiski [15]. Woyczyfiski’s result has been improved by de Acosta [16].

For some related results, see Wang and Bhaskara Rao 17].

THEOREM 5. Let {Vn, n > 1} be independent random elements in a real separable,

Rademacher type p (1 < p < 2) Banach space and suppose that

su" El IVnl IP

Let {a n _> 1} and {bn, n _> be constants such that 0 < b ’I" and

Then the SLLN

an O(n-I/P(log n)-I/q) for some 0 < q < p.
bn

(3.13)

(3.14)
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obtains.

aj(Vj- EVj)
j=l

brl
---) 0 a.c. (3.15)

PROOF. Condition (3.13) ensures that Vn, n > 1, all have expected values. Let c bn/lanl,

Yn VnI(I IVnll < Cn), n > 1. Now by (3.13) and (3.14)

El IYnl p El IVnl IP 1
Z -<Z _<cz <
n= c.r’ .=, c .=, c

implying (see the proof of Lemma 6)

(3.16)

Now

aj(Yj- EYj)
j=l

b
---) 0 a.c. (3.17)

El IVnl IP
)",P{V, # Y,} PIIIV, > %1 < < (3.18)
n=l n=l n=l CnP

recalling (3.16), whence by the Borel-Cantelli lemma P{lim inf [Vn Yn]} implying via (3.17)

that

aj(Vj- EYj)
j=l 0 a.c. (3.19)

Next,

Z __1 EliVnllI(lIV,all >ca)
n=l Cn

Y’P{ ’Vnl’ > Cn} + X "n] P{I ’Vnl’ > t}dt

n--I Cn IP
(by (3.18))

<c+cz 1
n=l CnP

(by (3.13) and (3.16)),

and so by the Kronecker lemma

(by (2.4))

1 ajEVjI(lIV1ll > cj) ll

b

yielding (3.15) via (3.19). E!

lalEI IVjl II(I IVjll > cj)

b
o(1)

THEOREM 6. Let {V n > be independent random elements in a real separable,

Rademacher type p (1 < p 2) Banach space. Suppose that {Vn, n > 1} is stochastically dominated

by a random element V in the sense that (1.2) holds, and s.uppose that Ell W ll q < for some



520 A. ADLER, A. ROSALSKY AND R.L. TAYLOR

_< q < p. Let {a n > and {b n >_ be constants satisfying 0 < b " ,, (3.8), and

Then the SLLN

an O(n-l/q).
bn

obtains, ba

(3.20)

--) 0 a.c. (3.21)

PROOF. Note that (1.2) entails E lIVnJlq < 0% n > 1, and hence V n > 1, all have expected

values. Let c bn/I a I, Yn VnI(I IV < nl/q), n 1. Now

El IYnl IP np/q nl/q<D P{IIDVII >
.= c .= c

4- Dp+ _1 El IVI lPI(I IDVll n/q) (by (2.3))
-1=

C / C n’-q El IVI IPI((k-1)uq < lDVll kuq)
n=l 1-1

(by (3.20) and Ell V Iq <,,o)

C + C)’ El IVl IPI((k-1)vq < IDVII < kl/q) n"-q

k--1 n----k

< C + C k(q-p)/q El IVI IPI((k-l)l/q < IDVI < k/q)
k-=-I

< C + C EI IVI IqI((k-l)uq < IDVII < kuq)
k=l

C + CEI IVI Iq <

implying (see the proof of Lemma 6)

ajCgj- EYj)

bn -- 0 a.c.

Now by (1.2) and El IVl q < 0%

PlVn Yn} P{ IVnl > nl/q} <D P{ IDVI > nl/q} < *%
n=l n=l n=l

and so by the Borel-Cantelli lemma P{lim inf [V Yn]} implying via (3.22) that

(3.22)

aj(Vj- EYj)
j=-l

b
---) 0 a.c.

Next, by (2.5), EIIVII < ,,, and the Lebesgue dominated convergence theorem

El lVnl II(I IVnll > nI/q) < D2EI IVl II(I IDVII > nI/q) o(I),

whence by (3.8) and the Toeplitz lernrna

(3.23)
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bn bn
yielding (3.21) via (3.23).

laIEl IVjl II(l IVjll > jl/q)
< j=l o(I)

The following Corollary is an extension of Theorem 2 of Adler and Rosalsky [2] (which, in

tum, is an extension of Theorem 3.1 of Fernholz and Teicher [18]) and establishes a SLLN for

normed weighted sums of stochastically dominated random variables. It will be used in the proofs

of Theorems 8 and 9 but may be of independent interest.

COROLLARY 1. Let {X n > 1} be independent random variables and let X be an Lv ran-

dom variable for some < p < 2. Suppose that IX n > 1} is stochastically dominated by X in the

sense that there exists a constant D < such that

P{ IXnl > t} < DP{ IDXI > t}, > 0, n > 1.

Let {a n > and {bn, n > be constants satisfying 0 < b T *,,, an/b O(n-VP), and (3.8).

Then the SLLN

obtains.

b
--) 0 a.c.

PROOF. Since (R, I’!) is a real separable, Rademacher type 2 Banach space, the Corollary fol-

lows immediately from Theorem 6 with p 2 and q p < 2. !"1

THEOREM 7. Let {V n > 1} be independent random elements in a real separable,

Rademacher type p (1 < p < 2) Banach space. Suppose that IV n > 1} is stochastically dominated

by a random element V in the sense that (1.2) holds, and suppose that E IVI IP < **. Let

la n > and Ibn, n > be constants satisfying 0 < b "1" ,o, (3.8), and (3.14). Then the SLLN

obtains.

0 a.c.

PROOF. Using the truncation Yn VnI(I IVn S nl/r’), n > 1, the argument is a slight

modification of that used to establish Theorem 6. The details are left to the reader. 121

REMARK. An interesting question which we are unable to resolve is whether Theorem 7

holds with (3.14) replaced by the somewhat weaker condition an/b O(n-UP). Moreover, Theorem
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7 should be compared with Theorem I0 wherein the {V n > I} are (uniformly) tight.

The next Theorem establishes a SLLN for normed weighted sums of random elements in a real

separable normed linear space which is Beck-convex. It should be compared with Theorem 5 of

Taylor and Padgett [19] (or Theorem 5.3.1 of Taylor [3, p. 137]).

THEOREM 8. Let {Vn, n > 1} be independent random elements in a real separable normed

linear space which is Beck-convex and let {a n > 1} and lb,, n > 1} be constants satisfying

an>0,n>l,0<bnT**, aj=O(bn),an/bn= O(n-l/p) forsome <p<2, and
j=l

_(aj dn) o(bn) (3.24)

wheredn-- min aj, n> If E IVnllq
l<j

, < for some q > p, then the SLLN

obtains.

b
---> 0 a.c. (3.25)

PROOF. Without loss of generality, it may and will be supposed that EV 0, n > 1. Sup-

pose, initially, that the {Vn, n > are uniformly bounded in the norm by a constant, that is,

lV.[[ < C a.c. Then, since nda < a O(b.),

j-I jl
@.

b. b. b.

cz %-%)
+ 0 a.c.

bn n

by (3.24) d a SLLN of Beck [20, eorem 10] (which is eorem 4.3.1 of Taylor [3, p. 87])

thereby pvg the eorem when ( IV 1 C a.c.

Next, in general, define

X.=VnI(IIV.II <M), Yn=V.I(IIV.II >M), n21,
where < M < is a constant. By the portion of the theorem already proved,

Note that for n 1,

aj(X- EXj)

b
---) 0 a.c. (3.26)
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E{Mq-IIVnlII(IIVnil >M)}
El IYnll Mq-I

El IVnl IqI(I IVnll > M) C< <
Mq_ Mq_

and so in view of aj O(bn)

j=l < j=l + j=-I

b bn bn

j=l +
bn

X aj(I IYjll El IYjl I)

< j=l +
bn

2Z ajEI IYjll

b

C
Mq-I

Now {I Ynll E lIYn II, n > I} are independent mean 0 random variables with

su El IYnl lq < 2q El IVnl lq,l E IIYnll EllYnll q<2q n>l na
By Lemma 5, there exists a random variable Y with ElY p < such that

PtlIIYn’I -EllYnll l>t} <P{IYI >t}, t>O,n> 1,

whence by Corollary

b
--> 0 a.c.

But then by (3.26) and (3.27)

(3.27)

< lim sup
n- b

I, aj(Yj- EYj),I
j=l+ lkn sup

n- b.

C
S a.c.

Mq-I

and since M is arbitrary, the conclusion (3.25) follows. []

4. SLLN’S UNDER PROBABILISTIC CONDITIONS.

In this section, SLLN’s are obtained without imposing geometric conditions on the Banach

space. As in Section 3, moment conditions are placed on independent random elements and restric-

tions are placed on the constants {an, n > and {bn, n > }. In Theorem 9, the Banach space is

assumed to admit a Schauder basis and in Theorem 10, the independent random elements in a
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Banach space are assumed to be (uniformly) tight.

For a Banach space admitting a Schauder basis, recall the definitions of Ifi, > ],

Um, m > 1}, and Qm, m > 1} presented in Section 2. Theorem 9 should be compared with

Theorem 5.1.4 of Taylor [3, p.114].

THEOREM 9. Let {Vn, n > be independent, mean zero random elements in a real separable

Banach space admitting a Schauder basis {13i, > 1}. Let {a n > 1} and bn, n > 1} be constants

satisfying 0 < b " *,,, (3.8), and

an
O(n-I/p) (4.1)

bn
for some < p < 2. Suppose that there exist random variables {Xi, and {Ym, m 2 and a

constant D < such that

Pllfi(Vn) > t} DPIIDXil > t}, > 0, n R 1, > 1,
P{ 111Qm(Vn)l El IQm(Vn>l > t} < DP{ IDYml > t},

su El Pt Xil <*% supEIYmlP<,%
m’l

and

t>0, m l,n> 1,

Then the SLLN

lim . El IQm(Vn)l O. (4.2)

- 0 a.c.

obtains.

PROOF. It follows directly from Corollary that

bll
--) 0 a.c. for each

and

lal(I IQm(Vj)I El IQm(Vj)I I)

Tin,n_=
j--1

0 a.c. for each m > 1.

Then

i-I b

j--I

b 1113ill 0 a.c. for each m > 1.

(4.3)

(4.4)
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Thus, by (4.4), (4.3), (3.8), and (4.2)

J=Ibn < lUm t’-bn II+

II EajQm(Vj)
j=l

b

[ b" II + T= +C El IQ=(Vj)I

---, 0 a.c. as first n-*** and then m-***, v!

THEOREM 10. Let {Vn, n > 1} be a (uniformly) tight sequence of independent, mean zero

random elements in a real separable Etanach space X. Let {a n and {b n > be constants

satisfying 0 < bn ’l" **, (3.8), and (4.1) for some 1 < p < 2. Suppose that IVn, n :> 1} is stochasti-

cally dominated by a random element V in the sense that (1.2) holds, and suppose that

E IV liP < **. Then the SLLN

obtains.

0 a.c.

PROOF. Let h be a norm-preserving, bicontinuous, linear mapping of X into C[0,1] (-- the

Banach space of all continuous real-valued functions y on [0,1] with norm II y ll ul ly(t) l).

The Banach space C[0,1] admits a monotone basis where IQm(y)l lyll and Ifm(y)l < lyll

for each y [0,1] and m > and where IQm(y)l I, m 1 is a monotone decreasing sequence

for each y C [0,1]. Then {h(Vn), n 11 is a (uniformly) tight sequence of independent, mean zero

random elements in C[0,1]. Now for arbitrary I > 0, choose u > 0 so that

D2EII V ll I(11Vll > u) < -. Then Lemma 3 provides Ell Vnl II(I IV, II > u) < - for all n 1.

By (urfiform) tightness, a compact sbset K of C[0,1] ma,y be chosen so that PIh(V,) d KI < 3"-’"

for all n 1, whence El IVnl II(I IVnll _< u)I(h(Vn) a K) S for all n > 1. Since IQm(y)l

for each y in the compact set K, Dini’s theorem ensures that there exists an integer mo such that

sup Q=(y) < e
yK

fr all m > rn" Then fr all m > rn and n >

EI Q=(h(Vn))l < EI Qm(h(Vn))I(I IV S u)I(h(Vn) K)

+ElIVnllI(llVnIl <u)I(h(V,)aK)+EIIVnllI(llV"ll >u)<
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thereby establishing (4.2) for the random elements Ih(Vn), n > }. The identifications X IVl

and Ym IVI + DE IIVll for all > and m > ensure that the other conditions of Theorem 9

hold. Thus

ZajVj h(ZajVj) Zajh(Vj)
j-I j=l j--I

bn bn bn
---> 0 a.c. V1

REMARKS. (i) When an 1, bn n, n > 1, and Ell V II P < for some p > 1, Theorem

10 in conjunction with Lemma 5 will establish the SLLN of Taylor [3, Corollary 5.2.9, p. 133]. As

pointed out by Taylor [3, p. 133], that same SLLN can be obtained from Theorem 5.2.8 of Taylor

[3, p. 13 I] but under the stronger assumption that s Ell Val P < for some p > 2.

(ii) Theorem 10 can fail if p and El IVll ,,,,. For an example, see Taylor [3, Example 5.2.3,

p. 135 ].

The next Corollary should be compared with Theorem 5.2.8 of Taylor [3, p. 131 ].

COROLLARY 2. Let {Vn, n >_ I} be a (uniformly) tight sequence of independent, mean zero

random elements in a real separable Banach space. Let {an, n > 1} and {b n > 1} be constants

satisfying 0 < b ’1" **, (3.8), and (4.1) for some < p < 2. If

then the SLLN

Ell Vnll q < for some q > p, (4.5)

obtains.

ZaV
b

0 a.c.

PROOF. Condition (4.5) ensures by Lemma 5 that (1.2) obtains and El IVl p < . The

Corollary then follows from Theorem 10. 121

In the next Corollary, the sequence {Va, n :> 1} is i.i.d, and the moment condition (4.5) is

weakened to Ell VIIIP. The Corollary should be compared with Theorem 5.1.3 of Taylor

[3, p. 112].

COROLLARY 3. Let {V n > be i.i.d, mean zero random elements in a real separable

Banach space. Let {an, n > 1} and {bn, n > I} be constants satisfying 0 < b "1" *,,, (3.8), and (4.1)

for some < p < 2. If El IVll IP < ,, then the SLLN
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obtains.

bn
---) 0 a.c.

PROOF. Since the i.i.d, hypothesis ensures that {V n > 1} is automatically (uniformly) tight

(see Taylor [3, p. 121]), the Corollary follows immediately from Theorem 10. []

REMARKS. (i) In the particular case where a 1, b --- n, and p 1, Corollary 3 reduces to

the SLLN of Mourier [7].

(ii) A Fr6chet space_ is a complete linear metric space. Using Theorem 10, a SLLN may be obtained

for random elements in a real separable Fr6chet space F which is a locally convex space with a

countable family of seminorms {Pk, k > 1} defined on it such that the metric d is defined by

d(x,y)
Pk(x Y)

k=l 2k(1 + pk(X y))
for x,y F.

The details will not be given since the argument parallels that of Theorem 5.2.10 of Taylor [3, p.

136]. (Corollary 2 plays the same role in the proof as Theorem 5.2.8 of Taylor [3, p. 131] played in

proving Theorem 5.2.10.) In fact, almost all of the results irt this section have parallel results for

Fr6chet spaces.

In the last theorem, there is no independence assumption on the sequence of random elements.

Moreover, the space is equipped with a seminorm p which is not necessarily a norm and thus the

result is applicable to a larger class of spaces than real separable normed linear spaces. "Eae
definition of random element is analogous to that discussed in Section for real separable normed

linear spaces.

THEOREM 11. Let {Vn, n > 1} be random elements in a real separable seminormed linear

space with seminorm p. Suppose that {Vn, n > 1} is stochastically dominated by a random element

V in the sense that there exists a constant D < such that

P{p(Vn) > t} < DPIp(DV) > t}, > 0, n > 1.

Let an, n > 1} and {b n > 1} be constants such that 0 < bn "1" and

SjSn lajl Jj-’gTJ =O(n). (4.6)
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hen

P{p(anV) > Dbn} < *,
n--1

bn
PROOF. Set Yn P(Vn), n _> 1, and Y p(V). Then by Theorem 2 of Adler and Rosalsky [1],

p ajVj ajl p(Vj)
: j--1

bn bn
---, 0 a.c. r"l
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