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ABSTRACT: Under appropriate hypotheses on the spaces, it is shown that a sequence

of order bounded llnear operators which is poJntwJse order bounded is uniformly

order bounded on order bounded subsets. This result is used to establish a

Banach-Stelnhaus Theorem for order bounded operators.

KEY WORDS AND PHRASES: lattice, order bounded operator, uniform boundedness

principle, Banach-Steinhaus Theorem.

1980 NATHEKATICS SUBJECT CLASSIFICATION: 48A40.

1. INTRODUCTION

In this note we consider the problem of obtaining a version of the classical

Uniform Boundedness PrlncJple of functional analysis for linear operators between

vector lattices. If X is a Banach space and Y is a normed linear space, the

Uniform Boundedness Principle then asserts that any sequence (Tj) of continuous

linear operators from X into Y which is poJntwise bounded on X is such that

the sequence of operator norms (,Till) is bounded {[1] t4). It is easy to see that

the condition that the (llTi.) are bounded is equivalent to the condition that the

sequence (Ti) Js uniformly bounded on bounded subsets of X {see the discussion

in [1] 14). Thus, a possible version of the Uniform Boundedness Principle for order

bounded linear operators (Ti) between vector lattices X and Y might be that if

(Tj) is pointwise order bounded on X, then (Ti} is uniformly order bounded on

order bounded subsets of X. We will show below in Example that such d

straightforward analogue of the Uniform Boundedness Principle does not hold even Jf

both X and Y are Banach lattices. However, by Imposing additional conditions on
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the spaces and by employing the matrix methods of [1], we will obtain an order

version of the Uniform Boundedness Principle in Theorem 3 below. Using the Uniform

Boundedness Principle, we also establish a version of the Banach-Stetnhaus Theorem

for order bounded operators which generalizes a result of Nakano.

2. RESULTS

First, conslder the following example which shows that a straightforward

analogue of the Uniform Boundedness Principle does not ho]d for order bounded linear

operators between Banach lattices. (A linear operator T between vector lattices

or Riesz spaces X and is order bounded If T carries order bounded subsets of

X into order bounded subsets of , where a subset A of a vector lattice X

order bounded if there is an order Interval [-u, u] (v X -u v u) such

that A c [-u, u] (in genera], we conform to the notation and terminology of [5]).)

EXAMPLE 1. Let X LI[O,1] and Y c
O

and assume that these spaces have

the usual polntwise ordering. For f e L1[0,1], set fk J
/ f(t)sin ktdt. Define
0

k

T
k X Y by Tkf fjej, where ej is the element of co with a in the

J=l
jth coordinate and 0 in the other coordinates. Each T

k
is order bounded since

k

if Ifl < g in X, then If j[ a and < soog ITkf aej AI the sequence

(Tk) is pointwise order bounded on X since if f e X, then

[Tkf [fjJej e c
0

(note ([fj[) e co by the Rlemann-Lebesgue Lemma).

j=l

However, (Tk} is not uniformly order bounded on order bounded subsets of X since

if Vk(t) sin kt, then (Fk) is order bounded in X (IFkl I) but

(Tl(i)} (el/2) is not order bounded in cO

Note that both X and Y in this example are Banach lattices and both are

Dedekind complete.

In order to obtain our version of the Uniform Boundedness Principle for ordered

spaces, we first obtain a matrix theorem which is the analogue for ordered spaces of

the matrix result given in [I] 2.1.

Throughout the remainder of this note we let X and Y denote Riesz spaces

(vector lattices), h sequence (xk) in X Is u-convergent to x, where u O, if

there exists a scalar sequence tk40 such that IXk x tku; we write

u lim xk x. The element u is called a convergence regulator for (Xk). The

sequence {xk) is reltivel niformly convergent to x if (xk) is u-convergent

to x for some convergence regulator u O; we write r llm xk x.
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LEMMA 2. ([4] 2.1) Let the infinite matrix [Xlj], xij X, be such that its

rows and columns are u-convergent to O. Let lJ > O, 6iJ " Then there exists

an increasing sequence of positive integers (pi) such that IXpiPj iju for

PROOF. Put Pl 1. Since (xlj) and {Xil) are u-convergent to O, there

exists P2 > Pl such that IXlp21 _< 12u and IXp21 < 21u" Similarly, there

iS P3 > P2 such that IXplP31 el3U, IXp2P31 23u, IXp3P21 32u and

IXp3pl e31u. Now continue.

We now prove our Uniform Boundedness Principle for order bounded operators.

Recall that if Y is Dedekind complete, then a linear map T X Y is order

bounded if and only if T is regular ([5] VIII.2.2).

THEOREM 3. Let g be Dedekind o-complete and let Y be Dedeklnd complete and

have an order unit u. If T
1

X Y is a sequence of order bounded linear maps

which is pointwise order bounded on X, then (T i) is uniformly order bounded on

order bounded subsets of g.

PROOF. If the conclusion fails, there is an interval I-w, w] in X such

that (Tt([-w, w]) e ) is not order bounded. Thus, for each there exist

x
i
e [-w, w] and m

i
such that TmtXl

14j-u, u]. For notational convenience,

assume that mI i. Then

14j-u, u]. (2.1)Tlx1

Now consider the matrix M [(1/t)Tl(xj/J2)]. For each J, (Tl(xj/j2)) 1
is order

bounded so the jth column of M is relatively uniformly convergent to O. The

sequence (xj/J 2) is relatively uniformly convergent to 0, and since each Tt is

sequentially continuous with respect to relative uniform convergence ([5] VIII .2),

the Ith row of M is also relatively uniformly convergent to 0. Thus, the rows

and columns of M are u-convergent to O. By Lemma 2 there is an increasing

sequence of positive integers (pi) such that I(1/pi)Tpi(Xpj/pj2) 2-l-Jr for

# J. Again for notational convenience, we assume that Pi i. Since X is

-complete and Ixjl w, the series j/j2 is absolutely order convergent to an

element x X ([5] IV. 9); moreover, this series is actually w-convergent in X
n

since Ix xj/j21 Ixjl/J2 ( 1/J2)w. From the continuity of T

J=l j=n+l Jfn+l
with respect to relative uniform convergence, we have
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< +1
.1=1 j=l

.j=l

< l(]/,)T,(x)l . 2

j=l

_< (]/J)lTi(x)l + 2-iv (2.2)

where we have used the order completeness of Y to insure that the series on the

right hand side of (2) are convergent. Both terms on the right hand side of (2) are

order bounded. Hence, there exists k such that (1/t)lTl(xi/t2) k[-u, u] for

all t. Putting 1 k contradicts (1) and the result Is established.

Note that the range space c
O in Example is Dedeklnd complete, but does not

have an order unit.

It is perhaps worthwhile noting that if (T1) is uniformly order bounded on

order bounded subsets of X, then the sequence of modull (ITII) also has this

property. For if 0 x u and ITt[0, u] w, then

ITllx sup(lTizl 0 z $ x) w ([5] VIII.2) so ITil[0, u]

From Theorem 3 we can also obtain an order analogue of the equicontlnuity

conclusion of the classical Uniform Boundedness Principle. Recall that if (T1) is

a sequence of continuous linear operators from a normed space X into a normed

space Y, then (Ti) is equlcontlnuous if and only if (TI) is uniformly bounded

on bounded subsets of X if and only if Tix
llm Tix 0 uniformly in 1 whenever xj 0 ([1] 4.5). It is easy to establish
J

order analogues of these equlcontlnuity conditions for operators which satisfy the

conclusion of Theorem 3. We give order analogues of these conditions below and

consider the relationship between them. If for each a e A, {xia is a sequence in

X, we say that ia is u-convergent to 0 uniformly for a A if there exists

a sequence tl0 such that IXla ttu for all a A; we write u ltm Xia 0

uniformly for a e A.
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PROPOSITION 4. Let T X Y be order bounded. Consider1

(i) (T1) is uniformly order bounded on order bounded subsets of X.

(11) if r llm xj O, then v llm TlxJ
0 uniformly for e for

some v e Y, v > O,

(111) r 11m Tlx 0 whenever r Jim x 0.

Always (I) implies (II) implies (ill). If Y is Archlmedean and has the

boundedness property ([3] 1.5.12), then (iii) implies {I).

PROOF. Assume (i) holds. To establish {ii), there exists tj, such that

{tjxj} is relatively uniformly convergent to 0 ([4] VI.4). Since (tjxj) is

order bounded, by (i) there is v e Y such that ITi{tjxj)l _( v for all I, J.

Then ITixjl <_ (1/tj)v Implles (I11.

Clearly (li) implies (ill). Assume {Ill) and that Y is Archimedean with the

boundedness property. Let u >_ O, u e X. By the boundedness property, it suffices

to show that if (Tkl) is a subsequence, Ixi <_ u and tl0, then

r lim tlTklXI O. But, since u lim tixi
O, this follows from (iii).

Theorem 3 gives sufficient conditions for the equlcontlnulty condition (I) and,

therefore, (ll) and {lli), to hold.

As in the classical case we can apply the Uniform Boundedness Principle given

in Theorem 3 to obtain a Banach-Stelnhaus type result for order bounded operators

([1] 5.1). There is an order version of the Banach-Steinhaus Theorem for linear

functlonals due to Nakano glven in [5] IX. 1.1, and a general form of the

Banach-Steinhaus Theorem for operators between vector lattices given in [4]. The

results in [4] treat a different class of operators than that considered below In

Corollary 5 and the assumptions on the spaces are not as restrictive.

COROLLARY 5. Let X, Y be as in Theorem 3 and let T X-, Y be order
I

bounded. If 0 lim Tix Tx exists for each x e X, then T X Y Is an order

bounded linear operator.

PROOF. For each x, (TlX) is order bounded since the sequence is order

convergent. Therefore, from Theorem 3, (T i) is uniformly order bounded on order

bounded subsets of X. If [u, v] is an order interval in X, then there is an

order interval I-w, w] in Y such that Ti([u, v])c_ [-w, w] for all i. Hence,

T{[u, v]) c I-w, w] and T is order bounded.

The sequence of operators (Ti) in Example is pointwlse order convergent to

the operator T X Y given by Tf fjej. IIowever, T is not order bounded

j=l

since (TFj) (ej/2), where Vj(t) sln//Jt. This shows that in general the
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Banach-Stelnhaus result will not hold if the range space is merely Dedektnd

complete.
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