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ABSTRACT: Under appropriate hypotheses on the spaces, it is shown that a sequence
of order bounded 1linear operators which is pointwise order bounded 1is uniformly
order bounded on order bounded subsets. This result is used to establish a

Banach-Steinhaus Theorem for order bounded operators.
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1. INTRODUCTION

In this note we consider the problem of obtaining a version of the classical
Uniform Boundedness Principle of functional analysis for linear operators between
vector lattices. If X is a Banach space and Y is a normed linear space, the

Uniform Boundedness Principle then asserts that any sequence (Ti) of continuous

linear operators from X into Y which is pointwise bounded on X 1is such that

the sequence of operator norms (ll'l‘ill) is bounded ([1] %4). It is easy to see that
the condition that the {llTill) are bounded is equivalent to the condition that the
sequence {Ti) is uniformly bounded on bounded subsets of X (see the discussion

in [1] %4). Thus, a possible version of the Uniform Boundedness Principle for order
bounded linear operators (Ti) between vector lattices X and Y might be that if

{T’} is pointwise order bounded on X, then (T is uniformly order bounded on

1)
order bounded subsets of X. We will show below in Example 1 that such a
straightforward analogue of the Uniform Boundedness Principle does not hold even if

both X and Y are Banach lattices. However, by imposing additional conditions on
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the spaces and by employing the matrix methods of [1], we will obtain an order
version of the Uniform Boundedness Principle in Theorem 3 below. Using the Uniform
Boundedness Principle, we also establish a version of the Banach-Steinhaus Theorem
for order bounded operators which generalizes a result of Nakano.
2. RESULTS

First, consider the following example which shows that a straightforward
analogue of the Uniform Boundedness Principle does not hold for order bounded linear
operators between Banach lattices. (A linear operator T between vector lattices
or Riesz spaces X and Y 1s order bounded if T carries order bounded subsets of
X into order bounded subsets of Y, where a subset A of a vector lattice X is
order bounded if there is an order interval [-u, u] = {(ve&eX:-ug<vg<u} such

that A < [-u, u] (in general, we conform to the notation and terminology of [5]).)

EXAMPLE 1. Let X = LI[O.I] and Y = o and assume that these spaces have

1
the usual pointwise ordering. For f € Ll[0,1]. set fk = I f(t)sin nktdt. Define
0
k
Tk : XY by ka = z fjej‘ where eJ is the element of c0 with a 1 in the
J=1
Jth coordinate and O in the other coordinates. Each Tk is order bounded since
1 k
if |f| ¢ g in X, then |fj| < I g =a and |ka| < 2 ae,. Also, the sequence
0 J
J=1
(Tk} is pointwise order bounded on X since if f € X, then

|ka| < 5 |fj|ej € c, (note (|fJ|} € ¢, by the Riemann-Lebesgue Lemma).
j=1

However, (T is not uniformly order bounded on order bounded subsets of X since

%
if P (t) = sinmkt, then (P} is order bounded in X (|r | < 1) but

(Ti(?i)) = (ej/a) is not order bounded in o

Note that both X and Y in this example are Banach lattices and both are
Dedekind complete.

In order to obtain our version of the Uniform Boundedness Principle for ordered
spaces, we first obtain a matrix theorem which is the analogue for ordered spaces of
the matrix result given in [1] 2.1.

Throughout the remainder of this note we let X ana Y denote Riesz spaces
(vector lattices). A sequence (xk) in X 1is u-convergent to x, where u 2 0, if
there exists a scalar sequence t, 40  such that Ix, - x| ¢ tiu; we write
u - lim X, = X. The element u is called a copvergence regulator for {xk). The

sequence (xk) is relative iform onvergent to x if (xk) is u-convergent

to x for some convergence regulator u ) 0; we write r - lim X = X
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LEMMA 2. ([4] 2.1) Let the infinite matrix [xU], xij € X, be such that its

rows and columns are u-convergent to 0. Let e > 0, € R. Then there exists

i)
an increasing sequence of positive integers (pl) such that |x

eij

| ¢e..u for
PPy i3

1273,
PROOF. Put p, = 1. Since {x”) and (xn) are u-convergent to 0, there

exists p, > p, such that |x1p | ¢ 12

\ < &€, ,,u and |xp2l| < LPLE Similarly, there

p.p | ¢ LI |xp P | < €gou and

is Py > D, such that |x
32

| € e u, |x
PyP3 13 2P3

|xp3p1| $ €5,u.  Now continue.

We now prove our Uniform Boundedness Principle for order bounded operators.
Recall that if Y is Dedekind complete, then a linear map T : X -+ Y is order
bounded if and only if T 1is regular ([5] VIII.2.2).

THEOREM 3. Let X be Dedekind o-complete and let Y be Dedekind complete and

have an order unit u. If 'l‘l : X+ Y 1is a sequence of order bounded linear maps

which is pointwise order bounded on X, then (T is uniformly order bounded on

i
order bounded subsets of X.

PROOF . If the conclusion fails, there is an interval ([-w, w] in X such
that (Ti([_"' w]) : 1 € N} 1is not order bounded. Thus, for each i there exist

X, € [-w, w] and m such that T. Xq € 14[—u, u]. For notational convenience,

1 1

i

assume that Ij = 1. Then

T,x, € i*[-u, u]. (2.1)

171

Now consider the matrix M = [(1/1)T1(xj/32)]. For each jJ, (Tj(xj/,jz))1 is order

bounded so the Jth

sequence (xj/ja} is relatively uniformly convergent to 0, and since each 'l‘1 is

column of M is relatively uniformly convergent to 0. The

sequentially continuous with respect to relative uniform convergence ([5] VIII 1.2),

the ith row of M is also relatively uniformly convergent to 0. Thus, the rows

and columns of M are u-convergent to O. By Lemma 2 there is an increasing

sequence of positive integers (pl) such that l(l/pl)Tp (xp /pjz)l < z_i'Jv for
i

i # j. Again for notational convenience, we assume that Py = i. Since X is

o-complete and lle < w, the series EXJ/J2 is absolutely order convergent to an

element x € X ([5] IV. 9); moreover, this series is actually w-convergent in X

n oo o
since  |x - }xj/Jal < } |xJ|/J2 < (2 1/3%)w.  From the continuity of T,
j=1 j=n+1 J=n+1

with respect to relative uniform convergence, we have
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2 2 2
la/nr e/ Sy aror s | S /T x|
j=1 3=1
J#i
ClamT@] + 3 [a/DTxy/57)
j=1
jri
¢ la/nT ]+ Ez"'Jv
j=1
j#i
¢ (/DT x|+ 27y, (2.2)

where we have used the order completeness of Y to insure that the series on the
right hand side of (2) are convergent. Both terms on the right hand side of (2) are
order bounded. Hence, there exists k such that (1/!)|T1(xi/12)| € k[-u, u] for

all 1. Putting i = k contradicts (1) and the result is established.

Note that the range space ¢ in Example 1 is Dedekind complete, but does not

0
have an order unit.

It is perhaps worthwhile noting that if (Ti) is uniformly order bounded on
order bounded subsets of X, then the sequence of moduli (|T1|) also has this
property. For if 0<x<u and |T1[0. ul| < w, then
|T1|x = sup(Iszl :0¢<2z< x)<w ([5] VIII.2) so |Ti|[0, u] < [0, w].

From Theorem 3 we can also obtain an order analogue of the equicontinuity
conclusion of the classical Uniform Boundedness Principle. Recall that if {Tl} is

a sequence of continuous linear operators from a normed space X 1into a normed

space Y, then (Ti) is equicontinuous if and only if (Tl) is uniformly bounded

on bounded subsets of X if and only if T.,x, -+ 0 whenever x, - 0 if and only if

b | i

lim zjj = 0 uniformly in 1 whenever xj -+ 0 ([1] 4.5). It is easy to establish
J

order analogues of these equicontinuity conditions for operators which satisfy the
conclusion of Theorem 3. We give order analogues of these conditions below and

consider the relationship between them. If for each a € A, ‘xia) is a sequence in

X, we say that ixial_ls_n:nnnlemm._m_o__nnitmllinr_aLA if there exists

a sequence t,40 such that |x, | < t,u for all a € A; we write u - limx, =0
i ia i i la

uniformly for a € A.
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PROPOSITION 4. Let Ti : X+ Y be order bounded. Consider

(i) AT is uniformly order bounded on order bounded subsets of X,

i
(11) if r - lim xJ = 0, then v - lim Tixj = 0 uniformly for 1 €N for
J
some ve€eY, v)>O,

(1ii) r - lim Tlx1 = 0 whenever r - lim Xy = 0.

Always (i) implies (ii) implies (iii). if Y is Archimedean and has the
boundedness property ([3] 1.5.12), then (iii) implies (i).
PROOF. Assume (i) holds. To establish (ii), there exists tjr» such that

(tjxj} is relatively uniformly convergent to O ([4] VI.4). Since (tjxj) is
order bounded, by (i) there is v € Y such that ITl(tjxj)I < v for all i, j.
Then ITiij < (l/tj)v implies (1i).

Clearly (ii) implies (iii). Assume (iii) and that Y 1is Archimedean with the
boundedness property. Let wu > 0, u € X. By the boundedness property, it suffices
to show that if {Tk } is a subsequence, |xi| <u and tllo, then

i

r - lim tiTkixl = 0. But, since u - lim tlx1 = 0, this follows from (iii).

Theorem 3 gives sufficient conditions for the equicontinuity condition (i) and,
therefore, (ii) and (iii), to hold.

As in the classical case we can apply the Uniform Boundedness Principle given
in Theorem 3 to obtain a Banach-Steinhaus type result for order bounded operators
({1] 5.1). There is an order version of the Banach-Steinhaus Theorem for linear
functionals due to Nakano given in [5] IX. 1.1, and a general form of the
Banach-Steinhaus Theorem for operators between vector lattices given in [4]. The
results in [4] treat a different class of operators than that considered below in
Corollary 5 and the assumptions on the spaces are not as restrictive.

COROLLARY 5. Let X, Y be as in Theorem 3 and let T1 : XY be order

bounded. If O - lim zj = Tx exists for each x € X, then T : X 5 Y is an order

bounded linear operator.

PROOF. For each x, (Tix} is order bounded since the sequence is order
convergent. Therefore, from Theorem 3, (Ti) is uniformly order bounded on order

bounded subsets of X. If [u, v] is an order interval in X, then there is an
order interval [-w, wl] in Y such that Ti([u, v]) € [-w, w] for all 1. Hence,

T([u, v]) € [-w, w] and T is order bounded.
The sequence of operators {Tl} in Example 1 is pointwise order convergent to
@
the operator T : X - Y given by Tf = 2 fjej' However, T 1is not order bounded
j=1
since (T?j) = (ej/z), where Pj(t) = sin T jt. This shows that in general the
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Banach-Steinhaus result will not hold if the range space 1is merely Dedekind
complete.
The author would like to thank Joe Kist for his kind assistance.
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