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ABSTRACT: Two further new methods are put forward for constructing the complete

ordered field of real numbers out of the ordered field of rational numbers. The

mthods are motivated by some little known results on the representation of real

numbers via alternating series of rational numbers. Amongst advantages of the

methods are the facts that they do not require an arbitrary choice of "base" or

equivalence classes or any similar constructs. The methods bear similarities to

a method of construction due to Rieger, which utilises continued fractions.
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1. INTRODUCTION.

The series of Enge] (1913) and Sylvester (1880) (see Perron [1])for represent:g

real numbers have been studied in some detail. Much less known is the fact that

there are alternating series representations of real numbers in terms of rationals

corresponding to the above. The only references to these alternating series that

we are aware of in the literature are in papers of E Remez [2] and H Salzer [3].

The series under discussion are as follows: Every real number A has a unique

representation in the form

A ao + i 1 + 1 + (-1)n+1 + (ao,a1,a2 ).
aI aIa2 ala2a3 aIa2 an

are integers such that ai+ 1
> ai

+ 1 >_-- 2 for il. Furthermore.say, where the

A is rtionZ if and only if A has a finite representation (ao,aI
(Compare this with the expansion of Engel (Perron [i]).)

Corresponding to the series of Sylvester (Perron [1]) we have every real number

A ao 1 1 + 1 + (-1)n+1 + ao,a1,a2 )),
a a2 a3 an



604 A. KNOPFMACHER AND J. KNOPFMACHER

say, where the i are integers defined uniquely by A such that al>_--i and

ai+ >_-- ai(ai + 1) for i>--_1. Furthermore, A is rovt.Lonc if and only if A

has a finite representation ((ao,aI an)).
In many ways, these representations may be compared with that by simple

continued fractions. The main purpose of this note is to justify this remark by

deriving some elementary properties of these alternating series representations and

(with these results as an initial motivation) then developing two new methods for

constructing the real number system from the ordered field of rational numbers. These

methods are similar to one recently introduced by G J Rieger [4] for constructing

the real numbers via continued fractions. The order relations in particular are defined

in an analogous fashion.

The methods share with Rieger’s method the advantage over other standard

techniques that they do not require an arbitrary choice of a "base", or the use of

(infinite) equivalence classes or similar such constructs. These properties are

shared as well in the construction of real numbers using ordinary Sylvester and Engel

series, considered in [5]. Two important differences between those and the present

methods are in the definition of the order relations for the series, as well as the

use here of terminating representations of rational numbers in place of infinite

recurring representations used in [5].

2. ALTERNATING SERIES REPRESENTATIONS FOR REAL NUMBERS.

For the convenience of the reader, because full previous details may be inaccessible

to many (including the present authors), we prove here the fundamental results concerning

the representation of real numbers via infinite alternating series. It is convenient

to introduce here a more general alternating series, analogous to the positive series

of Oppenheim [6], out of which we can deduce the results for alternating-Engel and

alternating-Sylvester series as special cases. We define the alternating-Oppenheim

algorithm as follows:

Given any real number A, let a [A] A 1 A ao Then we recursively define

where

Herein

[1 > 0an - >_-- 1 for n > 1, An

1 An (Cn/bn) for a > 0An+ - n
n

b
i b

i
aI a2 ai) ci c

i
a a2 ai)

are positive numbers (usually integers).

The two cases of particular interest to us are those for which b 1,

an, n > 1 (alternating-Engel series) and bn cn 1,n >___ i (the alternating-

Sylvester series).
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THEOREM 2.1. Evy reaZ number A has a unique representation in the orm

where

=o+l-!+ l-
aI a2 a3

> +i) al> iaz+ a%
Fu)uthermore every reag numbe A has a unique eprettion in the 6orm

where

A=ao+l_ 1 + 1
aI ala2 ala2a3

> +lal>%+ % i.

PROOF. Repeated application of the alternating-Oppenheim algorithm yields

A a +Ao 1

a + 1 bl
o a1 c1

a2

blb2 i= + i___ l.!_ +
o aI cI a2 ClC2 a3

+ (-i) k-i blb2..:bk-i AkClC2 Ck- 1

Now an
impl es

n

1 < A <__ 1 for 0 < A i.
an+l n an

Thus (_.1 A )(Cnlbn)An+l a n
n

1 1 )(cn/bn)< (- a+l
n n

an(an+l Cn/bn) < 1if 0 < An

1 for all n we obtainIn particular by setting bn cn

> 0 for i < nan+l
i > an(an + i) if ArAn+1

< 1 -- 0 as n -- , since 1 and the sequenceFurthermore An+1 a (a +1) al

{an} is strictly increasing. It follows that A has an alternating-Sylvester

expansion

A ao
+ 1___ 1__ +.1__ ((ao,al,a2 ))
aI a2 a3

which may perhaps terminate.

Secondly, by setting cn an bn 1 for all n we obtain
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an+ 1 > a + 1 if A. > 0 for i n
An+1

n c

1

and so An+l a +
< n 0 as n =, since aI

>--_ 1
ala2 an

Thus A has the alternating-Engel expansion

A:ao+l_ i + 1
aI ala2 ala2a3

(ao,a1.a2
which also may terminate.

Uniqueness of the representations follows from Proposition 2.3 on order below.
{Various other interesting special cases of the alternating-Oppenheim algorithm will

be treated in a separate article.)

We deduce now an important result on the alternating series expansions for

rational numbers.

PROPOSITION 2.2 The alternting-Sylvester and aternting-Engel sies tminate

t a fbte numb o terms i an oy i A is rational.

PROOF. Clearly any number represented by a finite expansion is rational.

Conversely, since Ai,i 1, is rational let A
i pi/qi, (pi,qi) 1. Now

since for either algorithm

1 1 it follows that qi <ai ]> --. Pia Pi

In the alternating-Sylvester case we now obtain

r+1 eL
qi/l aiqi

Thus 0_<_-- Pi+I qi- Piai < Pi Since {pi} is a strictly decreasing sequence

of non-negative integers we must eventually reach a stage at which Pn+1 O, whence

A a + 1___ 1__ + + (-1) n-1
o a I a2 an

The result for the alternating-Engel series follows similarly from

i+i qi-Piai
qi+l qi

We note that for rational numbers there is a possible ambiguity in the final term,

analogous to that for continued fractions. We eliminate this as follows"

CONVENTION 1. We replace the finite sequence ((ao,a an)) by

((ao,a an_2,an_1+l)) in the case an an_l(an_l+1). Similarly we replace

(ao,aI ,an by (ao,aI an_2,an_l+l) in the case an an_l+1 Furthermore

we identify A(I with its finite expansion (Uo,al an) or ((ao,ai an)),
respectively.

In order to be able to compare finite sequences of different lengths in size

we introduce the symbol m with the following properties" For any r(I,

r < co oo+ K to
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Now we can represent finite sequences by infinite sequences as follows-

m for j > n andCONVENTION 2 For every A (ao,aI an (I let a#
hence A (ao,al an,m,m ). Similarly represent

A ((ao,aI an)) (1 by A ((ao,aI an,, )).

PROPOSITION 2.3 (On Order) LeA: A (ao,a B (bo,b ), or
A ((ao,aI )) B ((bo,bI )). In both o/ these case, the coditon A<B
l equivalent to"

a2n < b2n or

(i i) a2n+l > 2n+1 where i 2n or i 2n+1 is the fit index iO such
that a. .

PROOF. We shall use the notation A’ 1__ 1 + forn an an+ an+2
1_ 1 + 1 -... forA ((ao,a1,a2 )), and An an arian+ 1 anan+lan+2

asA (ao,al,a2 ). (Note that we do not assume at this stage that An An
dfined by either algorithm

Now suppose (i) holds. If firstly ao < bo then

A a + A1 < a + i b b + B 1 B

in either case. Next suppose a2n < b2n’ n > O, in the alternating-Sylvester

case. The growth condition

implies that

a/+I ai( + i), i > i,

1 + 1An a2-n a2n+1 a2n+2

(i- i + i (i- i )+
+i a2 ia2n a2n a2n+2 n+2

+

> 1__(i_ i
+1a2n a2n+l a2n

since a. > 1 for i > 1, and by observing Convention 1. Furthermore,

A’ 1 1 + 1
2n a2-t a2n+l a2n+2

__< i i (i i__!___) i (i i

U2n a2n+l a2n+l+I U2n+3 a2n+3+I

Thus

< 1

a2n

An >
a2n n+i b2

2n

It now follows from A ao
+ a-l a--l + A’2n, B ao+ a--l l___a2 + B’2n

>_-- a. + i, i > i,that A < B In the alternating-Engel case, from ai+I
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A’ 1 1 + 1
2n 2n a2na2n+l a2na2n+la2n+2

>__ 1___ (1- 1 + 1

a2n a2n+l a2na2n+la2n+2
(i-

a2n+2+1

> 1__ 1 1 )_ i

a2n a2n+l a2n+l

as in the alternating-SyIvester case. Also

A’ 1 1 + 1
2n a2n a2na2n+l a2na2n+la2n+2

1 1 (1- 1

a2n a2ha2n+1 a2n+1
+1

Thus again

< 1

a2n. > > 1__>= B’
a2n+l b2n 2n

and the result A < B now follows from

A ao + 1 1 +..._ 1 AaI ala2 ala2 a2n_l n

B ao + 1_ 1 + ..._ 1 BI
a ala2 ala2..a2n_1 ,’n

Note that if b2n m then B’2n 0 and the result remains valid in this case The

result is proved in a similar fashion if (ii) holds.

3. CONSTRUCTIONS AND ORDER PROPERTIES

In the constructions below, standard facts about the ordered field Q of all

rational numbers are taken as understood. With the results of Section 1 as initial

motivation, we now define two sets E* and * and order relations on them as follows"

Let E* be the set of all formal infinite sequences A (ao,al,a2 of

integers i such that ai+1 >_--a.+r for i>_--1,a11. Also, let * be the set of

all formal infinite sequences A ((ao,al,a2 )) of integers such that

al>_-- 1 and ai+l>--_ai(ai+l) for i 1.

Finite sequences (rational numbers) are included in our sets E* and x using

Convention 2. We will frequently mae use of the property all sequences in E* and

satisfy

a. implies a. for all j > i

In both the sets E* and * we shall use corresponding lower-case letters

to denote the "digits" of the elements of the respective sets, and we define
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A < B if and only if

(i) a2n < b2n or

(ii) a2n+l > b2n+l
where i 2n or i 2n+1 is the first index >_-- 0 such that a. b.

LEMMA 3.1. In both cases, < is a "total ord%ing" 6ation, i.e., it is traitive

and satisfies the trichotomy law.

PROOF. We use the same argument in both cases. Firstly, trichotomy is

obvious. Next let A < B and B < C. Suppose ar br for

and br or for r < ,b c
(i) If i < j then ar cr for r < , and a < b c (i even) or

a. > b. c. (i odd).

(ii) If i j then ar cr
for r < j and ai < b

i < c
i (i even) or

a > bz > ci ( odd).

(iii) If Z > j then ar cr for r < j, and a b < c ( even) or

a. b. > c. ( odd). Thus A < C in each case.

We may now introduce symbols <--_, > and , and define (east) upp bound

and (9reotest) lome bound/, in the usual way.

LEMMA 3.2. Evg non-emptw ube;t o * (respeetive!W, *) mich is

has a ast uppe boun (supremum).

PROOF. First consider a non-empty subset X of E*, which is bounded above

by a sequence B (bo,b I
Assume Be. since otherwise there is nothing to prove. Now A <B for every

AEX, and there is a largest index such that every AX with a b has

aI b I a b. We may assume a b for some AX since otherwise

(o,l,m,m is an upper bound for X, where o is the maximum value of

for elements of X

We now define co bo c b If + 1 is odd let c+1
be the least

possible value for the digit a+1
of any AX with a bo. If + 1 is even

let c+1 be the greatest possible value for the digit +1 of any AX with

a bo, where we take c+1 m if +1 has no largest value. In either case

if c+1 m we are done, and put C (Co,C1 c,m,m ). Otherwise we continue

to define c+2
as the least possible value or greatest possible value depending on

whether + 2 is odd or even, respectively, for the digit a+2
of all elements of

the form (Co,CI C+l,a+2,a+3 in X. Again if c+2 m we are done and

put C (Co,C1 C+l,m,m ). Continue inductively, to define c++1 as the

least possible value (++i odd) or.greatest possible value (+i+l even) for the

digit a++1
of an element of X of the form (Co,C1 c+Z,a++l,+Z+2 ).

If, when ++1 is even, a+i+1
has no largest value, we take c+Z+ m. The

process terminates if at any stage c++1
m. We then take

C (Co,C1 c+,m,m ). Otherwise this process constructs a non-terminating
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+i forsequence C (co Cl, In either case we have CE* since Cr+l>--_c
> a. (i even)i I cI i. Also if C A then C >A since either c

or e. < a. (xL odd) for the first index >k such that c. a.

(by the definition of the sequence

Lastly, C sup)< since otherwise )< has an upper bound D< C. Then

dr. c-,O < i < m,dm em If m is odd then dm > Cm Hence every element

of the form A (eo,C Cm,am+l,am+2 in X satisfies D < A --<_ D

contradiction. If m is even we have d < c In the cases m 0 or

em < m (m > O) every element of the form A (eo,c1,....cm,
m am m for every A we can choosesatisfies D < A <_-- D In the case e

m
For a > d weA (c eI, am_ am,am+1 )X with arbitrarily large am. m m

have < A <_-- D. Finally, if c m and a m for some A , choose

A (Co,C Cm_l, m, and D < A I) once more.

The argument for S* is almost identical to the above, except that the sequence

C ((Co,Cl,C2 )) defined inductively via suitable elements of S* will now

saisfy ci+ >_--ci(i+l),Cl >_-- 1.

4. EMBEDDING AND DENSITY OF RATIONALS

The following proposition justifies our use of Convention 1.

PROPOSITION 4.1 The tntZng-EngZ and ntng-Sylvt ogoCtm

dne 1 1 ord-prving maps

PE* (I E* and PS* (I *
whose images oe dense in E* and * respectively.

PROOF. It is an immediate consequence of the results quoted earlier that the

two algorithms define 1 1 maps pE (1-- E* and PS* - * By

Proposition 2.3 and the definition of order in E* and , these maps are then

order-preserving.

Now let A < B in E Let k be the least index for which ak bk

We show now in every possible case that we can find a rational number D satisfying

A+B Now let AA < D < B. For A , B ( we take D-

If k is even then k < we choose D (Oo,Ol,...Ok,Ok+l+l,m,m if

Ok+l m’ or D (ao,aI ak,ak+l,k+2+l,m, m if Ok+l m’ i.e.,

Bm{,A . If instead k is odd then ak > Ok; we choose

D (=o,al ak,ak+l+l,m, m if ak+l m’ or D (o,1 D,6k+1,O+2 +1,

m,m if ai+l m and A{,B . A similar argument works in the case of

We note that sequences in E* and x have the intuitively desirable property

that rational numbers can be represented only by finite sequences (excluding m’s)

This des not hold in the case of ordinary Engel and Sylvester series (see for

example [1] ).
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APPROXIMATION LEMMA 4.2 Given anq eenent A o E* (rpecLve.y, *),

there exist ationols A n or n >--_ 0 such

(i) A (2m) A (2n) A A (2n+1) A (2m+1) or m < n

(ii) A sup A (2n) inf A (2n+1)

(iii) A(2n+l) A(2n) i
(2n+1)!

PROOF. Given A (ao,aI EE*, define the rational sequences A (n) by

A (n) (ao,aI an,,m ). Then part(i) follows. Next suppose that

A< B A (2n+1) for all n. In that case, we must have a > b if m is odd,

or a < b if m is even, for the first index m such that a b Then m
m m m m

odd gives the contradiction A (m) < B A (m) while m even gives the contradiction

A (m+l) < B A (m+l) Thus A infA (2n+l) Similrly, suppose that A (2n) =<C<A

for all n Consider the first index m for which om# cm. If m is even we must

> c which yields the contradiction A(m)<_-- C < A (m) If m is odd wehave am m m+lihave am < Cm, which gives the contradiction A (m+l) <C < A The same argument

leads to parts (i) and (ii) for *
For part (iii) in Ex, the formula for alternating-Engel series for rationals

leads to

A(2n+l) A(2n) 1 <__ 1

alaz...a2n+l (2n+l)!

since aI 1,ai+1
>_-- a/+l For *, the corresponding formula for alternating-

Sylvester series of rationals gives instead

A(2n+l)_ A(2n) 1 < 1

a2n+l (2n+l)!

since aI
>_-- 1 and ai+1

->_- ai(ai+l)
5. ALGEBRAIC OPERATIONS IN E* AND

Since we alreaady regard as an actual subset of * and * by Convention

1, it will simplify the discussion on algebraic operations below if we now re-deJrine

A (n) a (n>_-0)

for any routional A.

For any A,B( EX (or A,B*) we now define A + B sup(A (2n) + B(2n)),
A sup(-A(2n+l)), which exist in * (respectively, I*) because

A (2n) + B (2n) A (1) + B (1) A(2n+1) < A (0)

At this stage we note that the formal structures of the sets E* and x are very

similar to the set K, (based on continued fractions) used by Rieger [4] to construct

the real numbers. Thus to avoid repetition, we will refer the reader to the

corresponding result of Rieger whenever the proof of the algebraic property there is the

same.

LEMMA 5.1 The above operations make E (respectively, *) into an aelian group

cow.raining ((I,+) as a dense subgroup. Fuuther
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(i) A < B => A+ C < B + C

() < => A > -PROOF. Obviously A + B B + A and A + 0 A. The proof of the associative

law of addition can be found in Theorem 3.1 of [4]. Also the proof that A + (-A) 0

is found in Theorem 3.2 of [4]. The only changes that must be made are that we use

A(2n+l) A(2n) in place of inequality (1.4) of [4].
(2n+l)

It now follows that E (respectively, *) forms an abelian group with (Q,+)

as a dense subgroup. Then A + C B + C A B and hence the strict monotone law

(i) follows from the weak one proved below"

By the definitions of order and rational approximations we have

A < B =) A (2n) < B (2n) A (2n+l) < B (2n+l) for n sufficiently large

Hence A < B= A + C B + C

Finally, let A < B. Then A (2n+I) < B (2n+I) or -A (2n+I) >-B(2n+I)

for n sufficiently large. Thus

-A sup(-A (2n+I}) sup(-B (2n+I)) -B giving -A > -B since A B.

HenCe (i i) follows, since -(-X) X

Next, for any A,B E* (respectively, *), define

sup(A (2n) .B (2n)) if A >_-- O,B >_-- 0

A.B (-A). (-B) if A O,B =< 0

-((-A).B) if A O,B 0

-(A.(-B)) if A >_-- O, B 0

Also define

A-1 sup((A(2n+l)) -1) if A > 0
-i-((-A) if A < 0

The definitions are unambiguous, since we have

A (2n) B (2n) < A (I) .B (1) (A(2n+l)) -1 :< (A(O)) -1

for A > O,B > 0 and the theorem of the supremum is applicable. To cover all the

cases, we use the fact that A < 0 if and only if -A > O, by Lemma 5.1(ii).

LEMMA 5.2 The above denons t.ogethe)t wfth the eov.ier operoons make

E* (Respectively, * into a feld containing o a dense subfield,

A < B,C> 0 =, A.C < B.C

PROOF. Clearly A.B B.A and A.1 A. Also, since C > 0 implies

C (n) > 0 for all n, we obtain easily

0 < A < B, C > 0:=> A.C <--_ B.C

(with strict inequality to be shown later).

In order to verify that E*(X) is a field it remains only to verify that is
-i

associative, and distributive relative to +, and that A .A 1, A O. The



CONSTRUCTIONS OF REAL NUMBERS VIA ALTERNATING SERIES 613

associative law appears in Theorem 4.1 of [4], the distributive law in Theorem 4.2 of
-1[4], and A .A 1, A 0 is shown in Theorem 5.1 of [4]. In each case we must

replace Rieger’s inequality (1.4} by

A(Zn+1) A(2n) 1
(2n+l)

The strict monotone law for multiplication of positive elements now follows

from the weak one, and the law A.C B.C= A B (for positive elements). By

simple manipulation of the "sign" cases the result follows for all elements in

E* (or *).

The above discussion has shown that both E* and * form ordered fields

with the ]east upper bound property. By standard theorems, treated for example in

Chapter 5 of Cohen and Ehrlich [7], it then follows that * and * form concrete

new models for the real number system The models are in many ways equivalent

to that of Rieger [4], except that they arise from the (simpler) representation of

real numbers as infinite series rather than as infinite continued fractions.
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