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ABSTRACT: Two further new methods are put forward for constructing the complete
ordered field of real numbers out of the ordered field of rational numbers. The
methods are motivated by some little known results on the representation of real
numbers via alternating series of rational numbers. Amongst advantages of the
methods are the facts that they do not require an arbitrary choice of "base" or
equivalence classes or any similar constructs. The methods bear similarities to
a method of construction due to Rieger, which utilises continued fractions.
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1. INTRODUCTION.

The series of Engei (1913) and Sylvester (1880) (see Perron [1])for representing
real numbers have been studied in some detail. Much less known is the fact that
there are alternating series representations of real numbers in terms of rationals
corresponding to the above. The only references to these alternating series that
we are aware of in the literature are in papers of E Remez [2] and H Salzer [3].

The series under discussion are as follows: Every real number A has a unique

representation in the form

nt+l
-1 + 1 -...+Ji)—+... =(ao,al,a2,...).

1
(0
a  aa, a;ayay a,a,...a

n

= a.-+1 =2 for £=1. Furthermore.
L+1 L

A is national if and only if A has a finite representation (ao,al,..., au).

say,where the a; are integers such that a:

(Compare this with the expansion of Engel (Perron [1]).)

Corresponding to the series of Sylvester (Perron [1]) we have every real number

n+l
Azq + L -1 oo 40D T s ((aa,an,.0)),
° a4 a ag &y 012
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say, where the a; are integers defined uniquely by A such that aIE:I and
Qiyy = ai(ai + 1) for ({=1. Furthermore, A is national if and only if A
has a finite representation ((ao,al,...,an)).

In many ways, these representations may be compared with that by simple
continued fractions. The main purpose of this note is to justify this remark by
deriving some elementary properties of these alternating series representations and
(with these results as an initial motivation) then developing two new methods for
constructing the real number system from the ordered field of rational numbers. These
methods are similar to one recently introduced by G J Rieger [4] for constructing
the real numbers via continued fractions. The order relations in particular are defined
in an analogous fashion.

The methods share with Rieger's method the advantage over other standard
techniques that they do not require an arbitrary choice of a "base", or the use of
(infinite) equivalence classes or similar such constructs. These properties are
shared as well in the construction of real numbers using ordinary Sylvester and Engel
series, considered in [5]. Two important differences between those and the present
methods are in the definition of the order relations for the series, as well as the
use here of terminating representations of rational numbers in place of infinite

recurring representations used in [5].
2. ALTERNATING SERIES REPRESENTATIONS FOR REAL NUMBERS.

For the convenience of the reader, because full previous details may be inaccessible
to many (including the present authors), we prove here the fundamental results concerning
the representation of real numbers via infinite alternating series. It is convenient
to introduce here a more general alternating series, anaiogous to the positive series
of Oppenheim [6], out of which we can deduce the results for alternating-Engel and
alternating-Sylvester series as special cases. We define the alternating-Oppenheim
algorithm as follows:

Given any real number A, let a, = [A]. A1 =A- a, - Then we recursively define

- 1
a [7K- ]=1 for n=1, An > 0,

n
n
where
S
A+l (q An) (cn/bn) for a, > 0.
Herein
bL = b‘é(a1~azs---’a‘:) ) CL = ci(al,az,...,ai)

are positive numbers (usually integers).

The two cases of particular interest to us are those for which bn =1,

c, = a,,n = 1 (alternating-Engel series) and bn = Ch = 1,n=1 (the alternating-

Sylvester series).
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THEOREM 2.1.  Every neal number A has a unique representation in the goam

whene
= a/;(a&.+ 1), a; = 1.

Furnthenmone every neal number A has a unique nepresentation in the gomum

A=a + J; - 1 + 1 -
a4 X% (%%
where
@iy = a; + l,a1 = 1.

PROOF. Repeated application of the alternating-Oppenheim algorithm yields

A=a°+A1
b
=ao+i -_1 aZ:
49 4
b b,b .1 bsb b, _
=ao+l-—1-—1-+ 2,_1__._‘4_(_1)&1 12... k-1,
a ¢ 4 e,  ag €1+ Cpy
1 . .
Now a, = [A—] implies
n
1 1
a+1<An§a—- for0<Ansl.
n n
= (L.
Thus A+l ((a An) (cn/bn)
1.1
< (= ) /b )
an an+1 nn
- 1 ;
=_1 . , if 0 < =1.
@ (a 1) (c,/b,) i A,

In particular by setting bn =c, = 1 for all n we obtain

- 1 . .
anﬂ—[A ]2an(an*1),1f Ai>0for L=n.
n+l
Furthermore A ., < 1 .0 as n—> =, since a; = 1 and the sequence

a (a +1)

non
{an} is strictly increasing. It follows that A has an alternating-Sylvester
expansion

- 1 _1 - =
A=a + = a_+. ((ay,a;,a5,---))

which may perhaps terminate.

Secondly, by setting c, = a bn =1 for all n we obtain

n°
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- 1 i '
a =[—1=a, +1, if A, >0 fori=n,
+
n+l An+1 n <

1

A a +1
n+l < A -~ 0 as n —> o, since a, = 1 .
a n! 1

alaz. -y

and so

Thus A has the alternating-Engel expansion

- 1.1 1. -
A a, + m + . (ao,al.az,... )

which also may terminate.

Uniqueness of the representations follows from Proposition 2.3 on order below.
(Various other interesting special cases of the alternating-Oppenheim algorithm will
be treated in a separate article.)

We deduce now an important result on the alternating series expansions for
rational numbers.

PROPOSITION 2.2  The alternating-Sylvester and alternating-Engel senies teuminate
agten a ginite numbern of tewms if and only if A s rationak.

PROOF . Cleariy any number represented by a finite expansion is rational.

Conversely, since AL,L = 1, is rational let AL = pi/qi’ (pi,qi) = 1. Now
since for either algorithm
=7 L Ao -
a; [ AL 1> Ai 1 it follows that Q; " pag < P -

In the alternating-Sylvester case we now obtain

Pivr . 9 Pi%
q,{-t-l al'_qf,

Thus 0= P+l = a; " pa; < P; - Since {pi} is a strictly decreasing seguence
of non-negative integers we must eventually reach a stage at which Pl = 0, whence

n-1
A=ag + -1 4 2L
a a, a,
The result for the alternating-Engel series follows similarly from
Pl . WP
U+l 4

We note that for rational numbers there is a possible ambiguity in the final term,
analogous to that for continued fractions. We eliminate this as follows:

CONVENTION 1. We replace the finite sequence ((ao,al....,an)) by

((ao,al,....an_z.an_l+1)) in the case a, = an_l(an_1+1). Similarly we replace

(ao,al,...,an) by (ao,al,...,an_z,an_1+1) in the case a, = an_1+1. Furthermore,
. - . . - . ) \

we identify Ae@ with its finite expansion (“o’al""’an’ or ((ao,al....,an)),

respectively.

In order to be able to compare finite sequences of different lengths in size
we introduce the symbol w with the following properties: For any neQ@,

< w.wtLTw ., ww .
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Now we can represent finite sequences by infinite sequences as follows:

CONVENTION 2  For every A = (ao,al,...,an) e Q let aJ =w for 4> n and
hence A = (ao’al’”"an'“”“’"")' Similarly represent

A= ((ao,al,---,an)) €e@Q by A= ((ao,al,...,an,w,m,...)).

PROPOSITION 2.3 (On Order) Let A= (ao,al,...) #B = (bo’bl"")’ on

A= ((ag,ap,...)) #B = ((by,by,...)). In both of these cases, the condition A<B
L5 equivakent tc:

(i) ay, < bZn , on

(i) Uoue1 > b2n+1 , whene £ =2n on 4L = 2ntl s the finst index <=0 such
that a; # b‘: .

PROOF.  We shall use the notation A' = 1 .1 41 - for
a4y QG+l 2
- A R | 1 -
A ((ao,al,az,...)), and An T + ... for

aa  .a
n n n+l n ntl n+2

A= (ao,al,az,...). (Note that we do not assume at this stage that A;1 = An as

défined by either algorithm.)
Now suppose (i) holds. If firstly a, < bo then
A=ao+A1<a°+1§boéb + B, =B,

in either case. Next suppose a < b

case. The growth condition

2n o > 0, 1in the alternating-Sylvester

@iy = aL.(aL. +1), 4 =1,

implies that

Lo 1 1 1
A = = - + -
N T
=1 -1 5+ 1 -1 _)+ ..
A Gl T G Gpp4ptl
1 1, . 1
> -1 y=_1_
aZn a2n+1 a2n+l

since a; > 1 for £ > 1, and by observing Convention 1. Furthermore,

Aé:.L- 1 + 1 -
oG %un Ton+2
fl ol ey g1y
420 2n+1 a2n+1+1 on+3 a2n+3+1
é_l__
0
Thus
f 1 1 '
AL > 1 =1 =38
= 2
2n a2n+1 bZn "
It now follows from A =ga + 4+ - L1 4+ - Al B=a+ 1 -1 4+ . - g
o] al az 2n’ 0 a; az 2n

that A < B. In the alternating-Engel case, from Qg = a; ¥ 1, 4 =1,
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TTRL I  — 1 - .

oy =
" G0 Bn%en+l  %2n%2n+1%2n+2

e 1 (1- L — )+ ...
T2 Gy Toplon+1%n+2  Tope2tt
1 1, . 1

> — (1- ) = ——
2n aZn+l a2n+1

as in the alternating-Sylvester case. Also

Ar =1 .1 + 1 _
2n g a, a a, a a Tt
2n 2n 2n+l 2n 2n+l172n+2
sL._L gL ).

%20 %n%2nt1 2n+1
=_1
20
Thus again
! 1 1 )
A > —— = — = B ,
n a2n+1 b2n 2n

and the result A < B now follows from

- 1 1 1 '
A=a +—- o —A
.. 2
o ay a;a, alaz..azn_1 n
Bea+-l -1 4. -1 g
a; aa, aydy.-ay. ¢
Note that if b, = w then B) =0 and the result remains valid in this case. The

2n 2n
result is proved in a similar fashion if (ii) holds.

3. CONSTRUCTIONS AND ORDER PROPERTIES

In the constructions below, standard facts about the ordered field @ of all
rational numbers are taken as understood. With the results of Section 1 as initial
motivation, we now define two sets E* and $* and order relations on them as follows:

41 E:a£+ 1 for 4= 1,a1;: 1. Also, let $* be the set of
all formal infinite sequences A = ((ao,al,az,...)) of integers a; such that
= 1 and ai+1;;ai(ai+l) for (= 1.

Let E* be the set of all formal infinite sequences A = (ao,al,az,...) of
integers a; such that a.

Finite sequences (rational numbers) are included in our sets E* and $* using
Convention 2. We will frequently make use of the property all sequences in E* and
$* satisfy:

a; =w implies ad.=<u for all 4 > 4 .

In both the sets E* and $* we shall use corresponding lower-case letters

to denote the "digits" of the elements of the respective sets, and we define
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A < B if and only if

(1) G, < bZn , or

(i) %20+l > b2n+1 ’

where £ =2n or 4 = 2ntl is the first index £ = 0 such that a; 7 b/;

LEMMA 3.1. In both cases, < s a "total onderning" nelation, L.e., Lt i transitive
and satisgies the trnichotomy Law.

PROOF. We use the same argument in both cases. Firstly, trichotomy is
obvious. Next let A < B and B < (C. Suppose a, = bn. for 2 < 4, a; # b/;’

and bn=cn for &(d,b:{f(‘,j.

(i) If £ < 4 then a, =¢, for n < 4, and a; < b/; =c; (£ even) or
a; > bi =c; (£ odd).
(ii) If £ =4 then a, =¢, for n < 4, and a; < bx; < ¢ (L even) or

a; > bj‘ > e (£ odd).

n n

aJ = bJ. > CJ (4 odd). Thus A < C in each case.

We may now introduce symbols =, > and =, and define (Least) upper bounds

(iii) If 4 > 4 then a =c¢ for n < 4, and aJ=bJ < cj (4 even) or

and (greatest) fLower bounds, in the usual way.

LEMMA 3.2.  Every non-empty subset o4 E* (respectively, $*) which is bounded above
has a Least uppen bound (supremum).

PROOF. First consider a non-empty subset X of E£*, which is bounded above
by a sequence B = (bo’bl"") .

Assume B¢ X. since otherwise there is nothing to prove. Now A <B for every
Ae X, and there is a largest index k such that every A<X with a,
a = bl""’alz = bk' We may assume a_ = bo for some A<X since otherwise

0
(do,l,w,m,...) is an upper bound for X, where d0 is the maximum value of a,

= bo has

for elements of X .

We now define e, = bo""’ck = bk . If R+ 1 is odd let Cht1 be the least

possible value for the digit Qpy1 of any AeX with a, = bo. If R+ 1 1is even

let Che1 be the greatest possibie value for the digit Ay of any AeX with

a =b_, where we take ¢ has no largest value. In either case

o~ % pe1 -0 T Gy
if Cpyp = w We are done, and put C = (co’cl""’ck’“”“’""’)‘ Otherwise we continue

to define ¢ as the least possible value or greatest possible value depending on

R+2
whether f + 2 is odd or even, respectively, for the digit Qs of all elements of
the form (co’cl’""Ck+l’ata+2’ak+3"") .1n X Ag?m if Chap = w we are done and
put C = (co’cl""’ck+l’°”°’"'")' Continue inductively, to define Ch i+l as the
least possible value (k+i+l odd) or.greatest possible value (k+i+l even) for the

digit a

i+l of an element of X of the form (co’cl"‘"clz+xi'afz+4‘.+1"1k+£+2"")'

If, when Fk+{+1 is even, has no largest value, we take Chiitl = w. The

a .
R+i+1
process terminates if at any stage Chaitl = ©- We then take

C = (co’cl""’cfau’“”‘”"")‘ Otherwise this process constructs a non-terminating
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sequence C = (co,cl,...). In either case we have Ce€E* since c“lZcL&l for
L zl,clg 1. Also if C # AeX then C >A since either ¢ >aL. (£ even)
or e < a; (4 odd) for the first index « >k such that ¢ Foa
(by the definition of the sequence ().

L

Lastly, C = supX since otherwise X has an upper bound D< C. Then
d/; = cL.,O =4 < m,dm # Cn - If m is odd then dm > Cn - Hence every element

of the form A = (co,cl,... .) in X satisfies D < A =70 ;

s R A
contradiction. If m s even we have d_ < Co - In the cases m = 0 or
¢ < w((m > 0) every element of the f =

m < y orm A (co’cl""‘cm’amﬂ’m+2"")éx
satisfies D < A = D . In the case Cn = w,ay # w, for every A €X wecan choose
A= (co’cl""’cm-l’am’amﬂ"")EX with arbitrarily large ap- For a, > dm we

have 0 < A = D. Finally, if . and @, = w for some A € X, choose

A= (co,cl,...cm_l, w,w, ...) and D < A = D once more.
The argument for $* is almost identical to the above, except that the sequence
C = ((co,cl,cz,...)) defined inductively via suitable elements of $ will now

satisfy Ciyp = cL.(<1L.+l),c1 = 1.

4. EMBEDDING AND DENSITY OF RATIONALS
The following proposition justifies our use of Convention 1.

PROPOSITION 4.1 The alternating-Engel and alternating-Sylvesten algonithms
define 1 - 1 onden-preserving maps

pe* : Q - E* and ps* : Q - S* ’

whose images are dense <n E* and $* , nespectively.

PROOF . It is an immediate consequence of the results quoted earlier that the
two algorithms define 1 - 1 maps  ppx ! Q — E* and Pgx * Q> $* . By
Proposition 2.3 and the definition of order in E*X and $*, these maps are then

order-preserving.

Now let A < B in E* . Let k be the least index for which a, # bk .
We show now in every possible case that we can find a rational number D satisfying
A<D<B. For Ac @, B « Q we take v=é;—3. Now let A¢@Q or B£Q.
If k is even then @ < bk ; we choose D = (bo’bl""bk'bk+1+1’“”“’"") if
bk+1 £ w, or 0= (ao’al""’ah’ak+1’ah+2+1’m’w"") if bk+1 = w, i.e..
BeQ,A Q. If instead fk is odd then a, > bk; we choose
D= (ao’al""ah’ah+1+1’w’w"") if Ayl #w, or D= (bo’bl""’ofz’bk+1’bfz+2 +1,

w,0,...) if Qps1 =w and AeQ,B¢ Q. A similar argument works in the case of
5*

We note that sequences in E* and $* have the intuitively desirable property
that rational numbers can be represented only by finite sequences (excluding w's)

This does not hold in the case of ordinary Engel and Sylvester series (see for

example [1] ).
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APPROXIMATION LEMMA 4.2 Given any element A c§ E* (rnespectively, $*),
there exist nationals aln) gon n =0 such that

(i) a@m @m0 aentl) @) <o

(i1) A = sup AP = jpral20tD)
s (2n+l) _ ,(2n) _ 1
Gty A AT = e

PROOF. Given A = (ao,al,...) e E*, define the rational sequences A(") by
(n) _
A =

(ao,al,...,an,m,w,...). Then part(i) follows. Next suppose that

A< B = A(2"+l) for all n. In that case, we must have a, > bm if m is odd,

or G < bm if m is even, for the first index m such that a, # bm . Then m

odd gives the contradiction A(m) < B = A(m) , while m even gives the contradiction
A(m+1) < B = A(m+1) . Thus A = inf A(2"+1) . Similarly, suppose that A(Zn) =C<A
for all n . Consider the first index m for which qn# - If m is even we must
have @ > Cp > which yields the contradiction A(m):s C < A(m) . If m is odd we
have a, < Ce which gives the contradiction A(m+1) =C < A(m+1)

leads to parts (i) and (ii) for g* .

The same argument

For part (iii) in E*, the formula for alternating-Engel series for rationals
leads to

(2n+l) (2n) _ 1 1
A - A = =
alaZ"‘a2n+1 (2n+l)!

since ay = l,aL.+1 = ai+1 . For g*, the corresponding formula for alternating-
Sylvester series of rationals gives instead
A(2n+1)_ A(2n) S | < (21+1 S
Aol ntl)!

since = nd .
a 1 a aiq

5. ALGEBRAIC OPERATIONS IN E* AND g*

= ai(ai+l) .

Since we alreaady regard @ as an actual subset of E* and $* by Convention
1, it will simplify the discussion on algebraic operations below if we now re-define
AW - p (nzo)
for any rational A.

For any A,Be E* (or A,Be $*) we now define A +B = sup(A(Zn) + B(Zn)),
- A= sup(-A(2n+1)),
A20) | g@n) A1), g(1) L a@ntl) o ,(0)

which exist in E* (respectively, $*) because

At this stage we note that the formal structures of the sets E* and $* are very
similar to the set K, (based on continued fractions) used by Rieger [4] to construct
the real numbers. Thus to avoid repetition, we will refer the reader to the
corresponding result of Rieger whenever the proof of the algebraic property there is the

same.

LEMMA 5.1 The above operations make E* (respectively, $*) into an abefian group
containing (@ ,+) as a dense subgroup. Funthen
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(i) A<B=> A+C < B+C,
(ii) A<B=> -A> -B.
PROOF. Obviously A+ B =B+A and A+ 0 =A. The proof of the associative

law of addition can be found in Theorem 3.1 of [4]. Also the proof that A + (-A) = 0

is found in Theorem 3.2 of [4]. The only changes that must be made are that we use
(2n+l) _ ,(2n) _ 1
A A = (2n+l1)!

It now follows that E* (respectively, $*) forms an abelian group with (@Q ,+)

in place of inequality (1.4) of (4].

as a dense subgroup. Then A+ C =B+ C = A =B and hence the strict monotone law
(i) follows from the weak one proved below:

By the definitions of order and rational approximations we have
A< B> A(Zn) < B(Z”), A(2"+1) < 8(2"+1) , for n sufficiently large.
Hence A < B=» A +C =B+C.

A(2n+l) (2n+1) _A(2n+1) (2n+1) ,

Finally, let A < B. Then > -B

for n sufficiently large. Thus

< B or

A = sup(-ALPM)y = up-@1)) = g | giving -A > -B since A # B.
Hence (ii) follows, since =-(-X) = X .

Next, for any A,Be E* (respectively, $*), define

(2n) g(2n)y ¢

sup(A A=0,8=0,
A.B = (-A). (-B) if A=0,B8=0,
-((-A).B) if A=0,B8=0,
-(A.(-B)) if A=Z0,B=0.
Also define
P T sup((A2MI) Ly e A s 0
-((-4)7h if A<

The definitions are unambiguous, since we have
A2n) | g(2n) _ A1) (1) a(2nvD) )1 o, (0))-1

for A > 0,B > 0 and the theorem of the supremum is applicable. To cover all the
cases. we use the fact that A < 0 if and only if -A > 0, by Lemma 5.1(ii).

LEMMA 5.2 The above definitions together with the earliern operations make
E* (nespectively, $*) into a field containing Q as a dense subfield,
Further,

A < B,C> 0> A.C < B.C .

PROOF. Clearly A.B =B.A and A.1 = A. Also, since C > 0 implies
> 0 for all n, we obtain easily

ol

0<A<B,C>0> AC B.C

IA

(with strict inequality to be shown later).
In order to verify that E*($*) is a field it remains only to verify that . is

associative, and distributive relative to +, and that A.1 A=1, AFO0. The
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associative law appears in Theorem 4.1 of [4]. the distributive law in Theorem 4.2 of
(4], and AL
replace Rieger's inequality (1.4) by

LA =1, A#0 is shown in Theorem 5.1 of [4]. In each case we must

(2n+1) _ ,(2n) _ 1
A A = (2nt1)!

The strict monotone law for multiplication of positive elements now follows
from the weak one, and the law A.C = B.C => A = B (for positive elements). By
simple manipulation of the "sign" cases the result follows for all elements in
£* (or §*).

The above discussion has shown that both £* and $* form ordered fields
with the least upper bound property. By standard theorems, treated for example in
Chapter 5 of Cohen and Ehrlich [7], it then follows that E* and g* form concrete
new models for the real number system IR . The models are in many ways equivalent
to that of Rieger [4], except that they arise from the (simpler) representation of
real numbers as infinite series rather than as infinite continued fractions.
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