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ABSTRACT. We consider a differential equation é‘iE u(t)-Bu(t) = f(t), where the functions
u and f map the real line into a Banach space X and B: X +~ X is a bounded linear
operator. Assuming that any Stepanov-bounded solution u is Stepanov almost-periodic
when f is Bochner almost-periodic, we establish that any Stepanov-bounded solution u is
Bochner almost-periodic when f is Stepanov almost-periodic. Some examples are given in
which the operator éi_t - B is shown to satisfy our assumption.

KEY WORDS AND PHRASES. Bounded linear operator, differential operator, Bohr-
Neugebauer property, Bochner (Stepanov) almost-periodic function. 1980 AMS SUBJECT
CIASSIFICATION CODE. 34Gxx, 34Gl0, 34C27.

1. INTRODUCTION.
Suppose X is a Banach space and J is the interval —~ < t.< <, A function
fe L‘{oc (7;X) with 1 € p < » is said to be Stepanov-bounded or SP-bounded on J if
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Our first result is as follows.

THEOREM 1. Suppose f : J >~ X is a continuously differentiable Sl-bounded function,
and f' is an SP-bounded function with 1 p <«. Then, (@) if p=1, f is bounded
on J, and (b) if p > 1, f is bounded and uniformly continuous on J.

2. PROOF OF THEOREM 1.
(a) p = 1. For an arbitrary but fixed t € J, there exists at least one point
rté[t—l,t] such that

| £ (r)ll=  inf £ . (2.1)
t-l s st

Consequently, we have
el s rf el ds s | €]l gL, by D). (2.2)
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Hence, from the sl—boundedness of f', we obtain
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(b) p > 1. By HSlder's inequality, the SP-boundedness of f' implies the

Sl—boundedness of £f'. Hence, as shown above, £ is bounded on J.
Moreover, for 0 < tz-t1 <1 and I]-; + é = 1, we have,again by HO6lder's
inequality,
t.
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Therefore f is uniformly continuous on J, completing the proof of the theorem.

REMARK. If f : J > X is a continuously differentiable Sl-alnost periodic
function, with f£' being SP-bounded on J (1 < p < =), then f is (uniformly) almost-
periodic from J to X (see pp. 3 and 77, Amerio-Prouse [1] for the definitions of
(uniform) almost-periodicity and SP-almost periodicity).

PROOF. By Theorem 1, f is uniformly continuous on J. Hence, by Theorem 7,
p. 78, Amerio-Prouse [1], f is (uniformly) almost-periodic from J to X.

3. MAIN RESULT.

Iet B be a bounded linear operator on a Banach space X into itself. Then the
differential operator adz - B is said to have Bohr-Neugebauer property if, for any
(uniformly) almost-periodic X-valued function f, any bounded (on J) solution of
the equation

Lu®-B()=f(®onJ (3.1)
is (uniformly) almost-periodic.

Our result is as follows.

THEOREM 2. 1In a Banach space X, let the differential operator &= - B be such
that, for any (uniformly) almost-periodic X-valued function f, any Sl-bounded
solution of the equation (3.1) is Sl-alnost periodic. Then, for any Sl-almst
periodic continuous X-valued function g, any Sl—bounded solution u : J > X of the
equation

dEEu (t) - Bu (t) =g (t) on J (3.2)

is (uniformly) almost-periodic.
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PROOF. Since g is S-almost periodic from J to X, it is S'-bounded on J.
Consequently, u' = Bu + g is Sl—bounded on J. Hence, by Theorem 1, u is bounded on J.
Now consider a sequence { 6, (®) }:___l of non-negative continuous functions on
J such that

-1
n
6 (®© =0 for |t| znY, Sy by B @=L (3.3)
The convolution of u and d)n is defined by
(u*¢n) (t) = S u (t-s) ¢n (s) ds = S u (s) ¢n (t-s) ds. (3.4)
J J
Then, by (3.2), we have
& @) (6) =B (@) (6) = (g% ) (&) on J. (3.5)
We note that
sup || (W ) (t) [$sup [[uw | . (3.6)
teJ teJ

Further, we can show that g*¢n is (uniformly) almost-periodic from J to X (see the
proof of Theorem 7, p. 78, Amerio-Prouse [1]).

Therefore, by our assumption on the operator ;—t - B, (u*¢n) (t) is Sl—alnost
periodic for all n =1, 2,....

By (3.2), we have the representation

u(t)=u(0)+f8Bu(s)ds+J'gg(s)dsonJ. (3.7)

If t2 > tl, then

t
172 B () as = 1B 1] - swp flu 0 [+ eyt (3.8)
1 teJ

Hence fg Bu (s) ds is uniformly continuous on J. Also, by Theorem 8, p. 79, Amerio-
Prouse [1], J’g g (s) ds is uniformly continuous on J. Consequently, u is uniformly
continuous on J.

Similarly, from (3.5), it follows that u*¢n is uniformly continuous on J.
So, by Theorem 7, p. 78, Amerio-Prouse [1], u*cbrl is (uniformly) almost-periodic
for alln=1, 2,....

Now, by the uniform continuity of u on J, the sequence of convolutions (u*¢n) (t)
converges to u (t) uniformly on J. Hence u is (uniformly) almost-periodic from
J to X, which completes the proof of the theorem.

4. NOTES.
(1) Suppose X is a Hilbert space and B is a self-adjoint bounded linear
operator on X into itself. Then we know that the operator El% - B has Bohr-Neugebauer

property (see Zaidman [4]). Given an (uniformly) almost-periodic X-valued function f,
suppose that u is an Sl-bounded solution of the equation (3.1). If we replace g

by £ in the proof of our Theorem 2, then, by the Bohr-Neugebauer property of the
operator 4 _ B, it follows that u is (uniformly) almost-periodic from J to X.

dt

Thus the operator % - B satisfies the hypothesis of Theorem 2.



476 A.S. RAO

(ii) Now suppose X is a separable Hilbert space and B is a completely continuous
réormal operator on X into itself. Then, by Theorem 1 of Cocke [3], the operator
I B has Bohr-Neugebauer property. Consequently, the operator 4 B satisfies

dt
the assumption of Theorem 2.

4 (iii) Finally, suppose X is a reflexive space and B = 0. Then the operator
I has Bohr-Neugebauer property (dsee Amerio-Prouse [1], p. 55 and Authors' Remark
on p. 82). Hence the operator I satisfies the assumption of Theorem 2.
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