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ABSTRACT. By using two basic formulas for the digamma function, we derive a variety

of series that involve as coefficients the values (2n + I), n 1,2,..., of the

Riemann-zeta function. A number of these have a combinatorial flavor which we also

express in a trignometric form for special choices of the underlying variable. We

briefly touch upon their use in the representation of solutions of the wave equation.
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1. INTRODUCTION.

For the Riemann-zeta function (z), it is well known that

(2n) IB2nl (2)2n/(2n)! in which B2n denotes a Bernoulli number [I]. However,

there are no known analogous closed formulas for the numbers (2n + I), n 1,2,... In

this brief paper, we call upon two basic formulas for the digamma function z) to

derive series of polynomials and constants that involve these numbers. An

example of such a series is the following:

[. (-I)n+l
nffil 4n

(4n-l)

Sums of this type provide insights about these numbers and the relationships among

them. Aside from number theoretic aspects, series that involve evaluations of various

zeta functions play a role in the foundations of comblnatorlcs [2]. The formulas we

derive involve polynomials that permit connections with solutions of the wave equation

for certain types of singular data. While such representations have little practical

value, they illustrate how an intrinsfcally arithmetic function assumes a meaningful

role in a physical problem.
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In section 2, we make use of the formulas

(a) I + z) -y + (-l)n(n)zn-I
n;2

(b) z + 1) z) 1/z

(See [3]) to develop a pair of infinite series identities, in a lens shaped

convergence region, that involve the values (n) as well as certain polynomials. The

one of these of interest to us involves only the values (2n + I). By using

differentiation and integration properties of the polynomials entering these, we

derive a number of related series that have a combinatoric flavor. When the basic

complex variable has the form z + iy, one can express these series in terms of

trignometric functions which are more convenient for obtaining certain evaluations

(such as (I.I)). We do this in section 3 and then note the connections with wave

solutions in section 4.

While the results obtained appear to be novel, the mathematica tools used

involve little beyond elementary complex variables. Further relationships of the type

constructed can easily be developed. We leave it to the reader to develop

corresponding results for series involving the values (2n) by using the formula

(2.4b) obtained in the following section.

2. BASIC SERIES IDENTITIES.

We first define polynomial sets {fn(Z)} and n(Z) by means of the relations

f z z
n

2n _(l_z)2n

2n+l + (l_z)2n+1gn(Z) z

(2.1)

for n 0 and take fn(Z) gn(Z) 0 for n < O.

Using (l.2a) to express I + (l-z)) and l-z) in powers of (l-z) and (-z)

respectively, we have, by (l.2b),

$(2-z) -(1-z) $(1 + (-z)) $(1 + (-z))

[ gn(Z) (2n + 2) + [ fn(Z) (2n + I) I/(l-z)
n=O n=l

Similarly, (1.2) also gives

$(I+z) (z) (+z) $( + (z-l))

gn(Z) g (2n + 2) . fn(Z) (2n + I) i/z
n=O n=l

(2.2)

(2.3)
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for z e R. Upon adding (subtracting) the last two members of (2.3) to (from) the

last two members of (2.2), we obtain

n=l

(b) .
n---O

f (z) (2n + l)
n " (" -)

gn(Z) (2n + 2) - (l-z + 3

(2.4)

for z e R. These serve as the basic starting series. The subsequent discussion makes

use of only the first of these.

From (2.1), it readily follows that

(a) D2p f (z) [(2n)! / (2n- 2p)! f (z)z n n-p

(b) Dz2p+Ifn(Z) [(2n)! I (2n- 2p- I)’]. gn_p_l(Z)
(2.5)

Using these, it follows that if we differentiate (2.4a) 2p and 2p + times w/th

respect to z, we get, for z R,

() I
n;I

2n +
2p

2p) fn(Z) (2n + 2p + I)

-(2p + I) z-(2p + I)][(i-z)

(b) . (2n + 2p + 2

n=
2p+ gn(Z) (2n + 2p + 3)

-(2p + 2) -(2p + 2)=- [(i-z) + z

(2.6)

Similarly, if we multiply (2.4a) by zP(l-z)q, p,q positive integers, and

integrate with respect to z from 0 to I, we get using the definition of the beta

function, . {B(2n + p + I, q + I) -B(p + I, 2n + q + I)} (2n + I)
n=l

(2.7)

=5 [B(p + I, q)- B(p, q + 1)]

One can obtain formulas analogous to (2.7) by using (2.6).

For z e R, the formulas (2.6) are convenient for obtaining a number of specific

series. For example, if we take z I/2 in (2.6b), we get

n=0 -"
2n + 2p + 2) (2n + 2p + 3) 22p + 2

2p + (2.8)
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Similarly, if we select q p + in (2.7) and simplify the corresponding beta

functions, we have for p ) I,

V n (2n + 1) __ip(-1)! (2.9)L -(2n + p + I) (2n + p + 2) (2n + 2p + 2) (2p + I)’
n=l

3. TRIGNOMETRIC FORMS.

iO 2 2Suppose z I/2 + iy with ly < 3/2 Then z e with p + y

tan l(2y), and (l-z) e Note that 181 < /3 Then we have
2n(a) f (z) 2 i p sin (2n8)

n
2n+(b) gn(Z) 2 cos (2n + 1)8
-k ik O -ik O.(c) (l-z) -k +/- z p-k[e +/- e

(3.1)

Using these in (2.6), we deduce that

Ca) . (2n + 2p) o2n sin (2n8) (2n + 2p + I)2p
n=l

-(2p + I)
sin (2p + 1)8

(b) [ (2n + 2p + 2 2n +

n=O 2p+ p cos((2n + 1)O) K(2n + 2p + 3)

-(2p+2)- p cos (2p+2)0

(3.2)

If we select O /4, then 0 I/ 2 Then from (3.2a), we get

[ (-I)n+l 4n + 2p- 2) (4n + 2p I)
n--1 2

2n 2p 2p-2 / {sin (2p + I) /4}. (3.3)

For p O, this reduces to (I.I). Similarly, this choice for O in (3.2b) with p 0

gives

(3) + [ (-l)n
n=l

[4n (4n + I) + (2n + I) (4n + 3)] (3.4)

Other choices for 8 (such as /6) and p in the formulas (3.2) will lead to additional

identities.

4. CONNECTIONS WITH WAVE FUNCTIONS.

The wave polynomials wl,n(x,t) and W2,n(X,t), n 0,1,2,..., are solutions of the

equation
2w(x,t) 2w(x,t)

(4.1)2 2

nthat correspond, respectively, to the initial conditions Wl,n(X,O) x

Wl, 0) 0 and w
2

(x 0) 0 x
n

n
(x’

,n - W2,n(X 0) ([4], [5]). They are given
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explicitly by

(a) Wl, n n+ n(x,t) =-2- [(x + t) (x-t)

(b) w2, (x t) )n + I_( n +
n 2(n+l) [(x + t x-t)

(4.2)

Suppose

If we evaluate (2.4a) first at z x + t and then at x t and add, it follows from

the definition of f (z) and (4.2a) that
n

l-x x
[Wl,2n(X,t) Wl,2n(l-x,t)](2n + 1)

n=l (l_x)2_t 2 x2_t 2] (4.3)

The series in the left member of this converges in the interior S of the square

having vertices at (0,0), (I,0), (1/2, /2), and (I/2, 2/2). Note that the right

member of (4.3) reduces to I/x) at t 0 hich has singularities at x 0 and

x 1. he characteristics of the equation (4.1) through he points (0,0) and (1,0)

Sdetermine this same region The formula (2.6a) can be used to construct other such

sries involving the (2n + I). Finally, one can use (2.4b) to construct examples of

series of the wave polynomials W2,n(X’t) that involve the values (2n) as

coefficients.
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