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ABSTRACT. The Diophantine equation of the title is solved for i 3,4 and an infinite

family of solutions were found for i 5.
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I. INTRODUCTION.

In this note we will find an infinite family of solutions of

i
n + k(dn- i), k, d > 0, (I.I)

and for i 3,4, all solutions will be obtained.

This equation, for i 3, was a problem in [i] and solved by ligh [2]. The

solutions were n 1,2,3 and 5. For i 4, the problem was proposed in [3] by K. Wilke

and solved by the proposer in [4]. He showed that there are infinitely many values of

n and all can be obtained from a single recurrence relation. It is the purpose of this

note to show that there are infinite solutions for i 5 and, unlike i 4, no single

recurrence relation will yield all solutions.

2. SOLUTIONS FOR ARBITRARY i.

Reducing equation (I.i) to a congruence modulo n yields

k -i (mod n).

Hence there is a positive integer r such that k (rn i) and (i.i) can be written as

i
n + 1 (dn- i) (rn- i). (2.1)

We wish to find the set S of all triples (d,n,r) which satisfy (2.1). Clearly, if

(d,n,r) is in S, then so is (r,n,d).

Finding an infinite family of solutions of (2.1) is facilitated by the following

result:

THEOREM i. If (d,n,r) satisfies (2.1) then there are positive integers x and y

such that (x,d,n) and (n,r,y) also satisfy (2.1).
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PROOF. Multiplying (2.1) by d
i-I and dividing by dn yields the following:

i-1

d
i-2 ni-2di-3 d

i-I (rn i), (2 2)n + + +n+
dn

Since the right side of (2.2) is an integer it follows that dn must divide

i-i
n + d Let x be the positive integer such that

n+ d
i-1

dn
(2.3)

Now multiplying (2.3) by d and rearranging gives the following equation:

di + i (xd- i) (nd- i). (2.4)

Hence (x,d,n) satisfies (2.1) and similarly there is a positive integer y such that

(n,r,y) also satisfies (2.1).

Now equation (2.1) can be rewritten as follows.

i
n + (n0nI I) (n2n i), (2.5)

where (n0,nl,n2) satisfies (2.1). Thus for each positive integer j, according to

Theorem I, there are integers nj_ I, nj and nj+ such that (nj_l,nj,nj+I) satisfies

(2.1) and

i + 1 (nj_ i) (n i) (2 6)nj inj j+inj

THEOREM 2. If i > 3, then (2.1) has an infinite family of solutions.

PROOF. For n I, (2,1,3) and (3,1,2) are the only triples satisfying (2.1).

Starting with either one, we obtain an infinite family of solutions if for each j,

nj+1
> n.. Clearly n 1 and n2

> nI. Suppose nj > nj i’ solving for nj+ in (2.6)

we have

nj+l

i-I i-I
n. +n n.
3 j-I 3 i-3

2
n.n n.
3 j-i

Hence, by induction, nj+1
> n.3 if i > 3 and (2.1) has an infinite family of solutions:

(2,1,3) (nj_l,nj,nj+I) or (3,1,2) (nj_l,nj,nj+l)
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3. THE CASE i 3 OR i 4.

For i 3, the only solutions are n i, 2, 3 and 5 and can be found in [2].

For i 4, the solution were given in [4]. It was shown that if (d,n,r) with d r

is a nontrivial triple (i.e. n > l) satisfying (2.1), then d n r. Thus, from

Theorem i, there is a positive integer x so that (x,d,n) satisfies (2.1). Moreover,

if d i, then x d n. By continuing this process, starting from any nontrivial

solution of (2.1), eventually one will reach a solution of the form (l,n,r). But when

d I, the solutions of (2.1) with i 4 are (1,2,9) and (1,3,14). Thus the integers

n satisfying (2.1) with i 4 are precisely those integers in the sequence n n
2 n3<.

where any three consecutive terms satisfy (2.6) with i 4. Furthermore, (2.6) is

equivalent to

n + nj
i-2 j-1 +l

nj_inj+ n. + (3.1)
3

nj

and thus for any j there is a positive integer k. such that
3

nj_ + nj+ k.n.. (3.2)

It was shown in [4] that if i 4, then k. 5 for all j. Thus the values of n

satisfying (2.1) with i 4 are those in the sequences (with n i, n
2

2 or n I,

n
2 3):

and

I, 2, 9, 43, 206, 987

i, 3, 14, 67, 321, 1538

4. THE CASE i 5.

Even though (2.1) has an infinite family of solutions for i > 3, unlike the case

i 4, no single recurrence relation will yield all solutions for i 5. We will

accomplish this by showing that for each i 5, there is a triple (d,n,r) satisfying

(2.1) and yet it cannot be obtained from the two trivial solutions (3,1,2) and (2,1,3).
We will call such a triple primitive. Furthermore, we will also prove that, unlike

the case i 4, the integer k. in (3.2) is not a constant. Hence, even thomgh each

primitive triple generates an infinite family of solutions, no single recurrence

relation, as in the case i 4, can describe the family.

THEOREM 3. For each i 5, there is a primitive triple (d,n,r), n 2, satisfying

(2.1) besides the two trivial ones, (3,1,2) and (2,1,3).

PROOF. We will exhibit a triple (d,n,r) satisfying (2.1) that cannot be obtained

from either (3,1,2) or (2,1,3) by applying Theorem i. For i odd or i 2xj, x i, j
i

odd and j 3, n + can be factored. Hence there are integers a and b such that

(2,2,a) and (22x-I + 1,2,b) satisfy (2.1) for i odd and i 2xj respectively. They are

primitive because the only triples with 2 in the middle obtained from either (3,1,2) or

(2,1,3) are (l,2,y) and (z,2,1).
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2
x

2
x

For i -Zx, there are two cases: (i) if 2 + is not a prime, then 2 + ab

where a and b are odd Thus (d,2,r) is primitive where d
a + > and r

b +
2 2

(ii) if 22x + is a prime, then the only known values of x are x 0,i,2,3,4. We

need to consider x 3 and x 4 only. If x 3, then i 8 and

> I.

38 + 17.386 (6.3 i) (129.3 i).

Hence (6,3,129) is primitive because the only triples with 3 in the middle from (3,1,2)

or (2,1,3) are (x,3,1) and (l,3,y). If x 4, then i 16 and

616 + 1697-1662410081 (283.6 i) (277068347.6 i).

Again, starting with (3,1,2) or (2,1,3), applying Theorem I, one does not get

(283,6,277068347). Hence it is primitive.

Recall that when i 4, there are only two primitive triples satisfying (2.1),

namely (3,1,2) and (2,1,3). Starting from either one, using Theorem i, one obtains an

infinite family of solutions and furthermore, all of them are given by the recurrence

relation (3.1) with k. 5 for all j.
3

In order to show k. 5 for all j when i 4, it was shown in [4] that, according
3

to (3.1) and (3.2),

nj_ I + nj+1 nj + nj+2

n.j nj+I

for all j. (4.1)

However, for i > 5, (4.1) no longer holds.

THEOREM 4. nj-I + nj+l nj + nj+2

n.3 nJ+I
if and only if i 4.

PROOF. From (2.6),

i-I
n
j+1 + n.

3

nj+2 and nj_l
1njnj+l

i-1
n. + n
3 j+l

nj+Inj

Using the above and simplify, we have

2 i-2
nj + nj+2 nj + n

j+
and

nj+1 nj+inj 1

nj_ I + nj+I

n.

i-2 2
n. +n
3 j+l

nj+inj
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Hence n2. + i-2 i-2 2
3 nJ+I n.3 + nj+l implies

2 i-4 2 i-4
nj+ (nj+ i)= nj (nj i). (4.2)

By Theorems 2, nj+ > n.3 for all j and thus (4.2) holds if and only if i 4.

We can conclude from Theorem 4, even though one gets an infinite family of

solutions starting with any primitive triple, for i > 5 no single relation describes

all solutions.

5. CONCLUDING REMARKS.

Equation (2.1) can be written as

i-I
n drn + (d + r) 0. (5.1)

A similar equation,

2
n + (d + r)n kdr, (5.2)

was investigated by W.R. Utz in [5] and he obtained all solutions. Because of the

similarity of (5.1) and (5.2), at least in appearance, and the fact that there are

other primitive triples for i 5 in (2.1), we conclude this note with the following

problems:

Problem i.

Problem 2.

Find the solutions of

i
n + (d + r)n kdr.

Find all primitive triples, if possible, of equation (2.1) for i Z 5.
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