A TOPOLOGICAL LATTICE ON THE SET OF MULTIFUNCTIONS

BASIL K. PAPADOPOULOS

Democritus University of Thrace Department of Mathematics 67100 Xanthi, Greece

(Received March 1, 1988 and in revised form May 10, 1988)

ABSTRACT. Let X be a Wilker space and M(X,Y) the set of continuous multifunctions from X to a topological space Y equipped with the compact-open topology. Assuming that M(X,Y) is equipped with the partial order \subset , we prove that $(M(X,Y), \subset)$ is a topological V-semilattice. We also prove that if X is a Wilker normal space and U(X,Y) is the set of point-closed upper semi-continuous multifunctions equipped with the compact-open topology, then $(U(X,Y), \subset)$ is a topological lattice.

KEY WORDS AND PHRASES. Continuous multifunctions, upper semicontinuous multifunctions, compact-open topology, topological lattice. 1980 AMS SUBJECT CLASSIFICATION CODE. 54C35, 54C60.

1. INTRODUCTION AND DEFINITIONS.

A mapping F from a set X to a set Y which maps each point of X to a subset of Y is called multifunction. For any subset A of X, $F(A) = \bigcup_{x \in A} F(x)$. For any subset B of Y, $F^+(B) = \{x \in X:F(x) \subset B\}$ and $F^-(B) = \{x \in X:F(x) \cap B \neq 0\}$. Let X and Y be topological spaces.

A multifunction F from X to Y is upper semi-continuous (lower semi-continuous) if and only if $F^+(P)$ ($F^-(P)$) is open for each open subset P of Y (see Smithson [1]).

A multifunction $F:X \rightarrow Y$ is continuous if and only if it is both upper and lower semi-continuous [1].

A multifunction F:X+Y is point-closed [1] if and only if F(x) is a closed subset of Y, for each x \in X.

If F_1 , F_2 are two multifunctions from X to Y, by $F_1 \lor F_2$, we denote the multifunction from X to Y defined by $(F_1 \lor F_2)(x) = F_1(x) \cup F_2(x)$. Also, by $F_1 \land F_2$, we denote the multifunction from X to Y defined by $(F_1 \land F_2)(x) = F_1(x) \cap F_2(x)$ in Kuratowski [2].

In the following, by M(X,Y), we denote the set of continuous multifunctions. Also, by U(X,Y), we denote the set of point-closed upper semi-continuous multifunctions. Let K be a compact subset of X and P an open subset of Y. Let $\langle K, P \rangle = \{F \in M(X,Y):F(x) \cap P \neq 0 \text{ for all } x \in K\}$ and $[K,P] = \{F \in M(X,Y):F(K) \subset P\}$. The topology T_{CO} on M(Y,Z) generated by the sets of the form $\langle K,P \rangle$ and [K,P], where K is compact in X and P is open in Y, is called the compact open topology on M(X,Y) [1].

The topology T_{CO}^{\star} on U(X,Y) generated by the sets of the form [K,P] = {F \in U(X,Y):F(K) \subset P}, where K is compact in X and P open in Y, is called the compact-open topology on U(X,Y).

For simplicity, in what follows, we use the symbols M(X,Y) (U(X,Y)) to denote the topological spaces (M(X,Y), T_{co}) ((U(X,Y),T^{*}_{co})).

We give now the definition of Wilker spaces that we will use in the following: A topological space X satisfies the Wilker's condition (D) For every compact subset K=X and for every pair of open subsets A_1 , $A_2 \in X$ with $k \in A_1 \cup A_2$ there are compact subsets $K_1 \subseteq A_1$ and $K_2 \subseteq A_2$ such that $K \subseteq K_1 \cup K_2$ is called a Wilker space (Wilker [3]). It can be easily proved that the class of Wilker spaces contains properly the class of T_2 spaces and also the class of basic locally compact spaces (i.e. those spaces every point of which has a neighborhood basis consisting of compact sets). In [4] basic locally compact spaces are called locally quasi-compact spaces and in Murdehswar [5] they are called spaces which satisfy condition L_2 .

In this paper we prove that if X is a Wilker space, then the \vee -semilattices $(M(X,Y), \subset)$, $(U(X,Y), \subset)$ are topological, i.e., we prove the continuity of the join operation \vee . It is also noticed that if X is a normal space, $(U(X,Y), \subset)$ is a semilattice [4,p.4]. Finally, if X is a Wilker normal space, we prove that the meet operation \wedge is continuous, i.e., $(U(X,Y), \subset)$ is a topological semilattice [4, p.274].

The worth of the above results relies on the fact that the space U(X,Y) (M(X,Y)) can be considered as a topological lattice (topological V-semilattice [4,p.4]).

2. MAIN RESULTS.

PROPOSITION 2.1. Let X be a Wilker space. Then the operation $(F_1,F_2) \rightarrow F_1 \lor F_2:M(X,Y) \times M(X,Y) \rightarrow M(X,Y)$ is continuous. Thus the V-semilattice $(M(X,Y), \subset)$ is topological.

PROOF. Let $(F_1, F_2) \in M(X, Y) \times M(X, Y)$ and $F_1 \lor F_2 \in [K, P]$. Then $(F_1 \lor F_2)(K) \subset P$, which implies that $F_1(K) \subset P$ and $F_2(K) \subset P$. Hence $F_1 \in [K, P]$, $F_2 \in [K, P]$ and it can be easily proved that $(G_1, G_2) \in [K, P] \times [K, P]$ implies that $G_1 \lor G_2 \in [K, P]$.

Let now $F_1 \lor F_2 \in \langle K, P \rangle$. Then $(F_1 \lor F_2) (x) \cap P \neq 0$ for each $x \in K$. So we have $K \subseteq \overline{F_1}(P) \cup \overline{F_2}(P)$. But since X is a Wilker space there are compact subsets K_1 , K_2 of X, such that $K_i \subseteq \overline{F_1}(P)$, i = 1, 2, and $K \subseteq K_1 \cup K_2$. So $F_1 \in \langle K_1, P \rangle$, $F_2 \in \langle K_2, P \rangle$. We prove now that $(G_1, G_2) \in \langle K_1, P \rangle \times \langle K_2, P \rangle$ implies that $G_1 \lor G_2 \in \langle K, P \rangle$. Let $(G_1, G_2) \in \langle K_1, P \rangle \times \langle K_2, P \rangle$. Then, $K_i \subseteq \overline{G_i}(P)$, i = 1, 2, which implies that $K \subseteq K_1 \cup K_2 \subseteq \overline{G_1}(P) \cup \overline{G_2}(P) = (G_1 \lor G_2) (P)$. Therefore $G_i \lor G_2 \in \langle K, P \rangle$. The proof of the following Proposition is the same as that of Proposition 2.1 (first part) and it is omitted.

PROPOSITION 2.3. Let X be a Wilker space. Then the operation

 $(F_1,F_2) \rightarrow F_1 \lor F_2$: U(X,Y) × U(X,Y) \rightarrow U(X,Y) is continuous. Thus, the \lor -semilattice (U(X,Y), \subseteq) is topological.

LEMMA 2.3. [2, p.179]. Suppose X is a normal space. Let $F_1: X \rightarrow Y$, $F_2: X \rightarrow Y$ be two point-closed upper semi-continuous multifunctions and P an open set in Y. Then,

$$(F_1 \wedge F_2)^+(P) = \bigcup \{F_1^+(V) \cap F_2^+(W)\}$$
, where V,W are open in Y, $V \cap W = P$.

PROPOSITION 2.4. Consider a Wilker normal space X. Let U(X,Y) be the set of point closed upper semi-continuous multifunctions equipped with the compact-open topology. Then $(U(X,Y), \subset)$ is a topological lattice.

PROOF. It suffices to prove that $(U(X,Y), \subset)$ is a topological similattice, i.e., that the meet operation \land is continuous. According to the previous lemma, it is obvious that the function $(F_1,F_2) + F_1 - F_2:U(X,Y) \times U(X,Y) + U(X,Y)$ is well defined, i.e. that $(U(X,Y), \subset)$ is a semilattice.

We prove now that \land continuous. Let an arbitrary $(F_1,F_2) \in U(X,Y) \times U(X,Y)$ and let $F_1 \land F_2 \in [K,P]$, where K is compact in X and P is open in Y. Then by the previous lemma

$$\mathbf{K} \subset (\mathbf{F}_1 \wedge \mathbf{F}_2)^+(\mathbf{P}) = \bigcup \{\mathbf{F}_1^+(\mathbf{V}) \cap \mathbf{F}_2^+(\mathbf{W})\},\$$

where V,W are open in Y, V \cap W = P. But since K is compact there are finitely many sets V_i, W_i, i = 1,...,n such that

$$K \subset \bigcup_{i=1}^{n} \{F_{1}^{\dagger}(V_{i}) \cap F_{2}^{\dagger}(W_{i})\},\$$

where V_i, W_i , are open in Y, $V_i \cap W_i = P$, i = 1, ..., n. Moreover since X is a Wilker space there exist compact subsets of X, K_i , i=1,...,n, such that

$$K_i \subseteq F_i^+(V_i) \cap F_2^+(W_i) \text{ and } K \subseteq \bigcup_{i=1}^n K_i.$$

Thus, $K_i \subseteq F_1^+(V_i)$, $K_i \subseteq F_2^+(W_i)$, $i = 1, \dots, n$.

Hence $F_1 \in [K_i, V_i]$, $F_2 \in [K_i, W_i]$, $i = 1, \dots, n$ and finally

$$(\mathbf{F}_1,\mathbf{F}_2) \in \bigcap_{i=1}^n [\mathbf{K}_i, \mathbf{V}_i] \times \bigcap_{i=1}^n [\mathbf{K}_i, \mathbf{W}_i].$$

It remains to prove that for each

$$(G_1, G_2) \epsilon \bigcap_{i=1}^{n} [K_i, V_i] \times \bigcap_{i=1}^{n} [K_i, W_i], G_1 \wedge G_2 \epsilon [K, P].$$

To prove this consider an aribtrary

$$(G_1, G_2) \ \epsilon \ \underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi$$

It must be shown that K $(G_1 \ G_2)^+(P)$. Let an arbitrary $x \in K$. Then $x \in K_i$, for some i, $1 \le i \le n$. Since $K_i \subseteq G_1^+(V_i)$, $K_i \subseteq G_2^+(W_i)$, we have that $G_1(x) \subseteq V_i$, $G_2(x) \subseteq W_i$. So $G_1(x) \cap G_2(x) = (G_1 \land G_2)(x) \quad V_i \cap W_i = P$. Thus, $x \in (G_1 \land G_2)^+(P)$, which completes the proof.

ACKNOWLEDGMENT.

I would like to thank the referee for his useful suggestions.

REFERENCES

- SMITHSON, R.E., Multifunctions, <u>Nieuw Archief voor Wiskunde (3)</u>, XX, (1972), 31-53.
- KURATOWSKI, K., <u>Topology</u>, Vol. I, Academic Press, New York San Francisco, London, 1966.
- WILKER, P., Adjoint product and hom-functors in general topology, <u>Pacific J.</u> Math. 34 (1970), 269-283.
- GIERZ, G., HOFMANN, K.H., KEIMEL, K., LAWSON, J.D., MISLSOVE, M. and SCOTT, D.S., <u>A Compendium of Continuous Lattices</u>, Springer, Berlin - Heidelberg - New York, 1980.
- MURDESHWAR, M.G., <u>General Topology</u>, Wiley Eastern Limited, New Delhi, Bangalore Bombay, Calcutta, Madras, Hyderabad, 1986.