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ABSTRACT. Let X be a Wilker space and M(X,Y) the set of continuous multifunctions

from X to a topological space Y equipped with the compact-open topology. Assuming

that M(X,Y) is equipped with the partial order c we prove that (M(X,Y),c) is a

topological V-semilattice. We also prove that if X is a Wilker normal space and

U(X,Y) is the set of point-closed upper semi-continuous multifunctlons equipped with

the compact-open topology, then (U(X,Y), c) is a topological lattice.
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i. INTRODUCTION AND DEFINITIONS.

A mapping F from a set X to a set Y which maps each point of X to a subset of Y

is called multifunction. For any subset A of X, F(A) , F(x). For any subset B

of Y, F+(B) {x X:F(x) cB} and F-(B) {x X:F(x)oB 0}. Let X and Y be

topological spaces.

A multifunction F from X to Y is upper semi-continuous (lower semi-continuous) if

and only if F+(P) (F-(P)) is open for each open subset P of Y (see Smithson [I]).

A multifunction F:X Y is continuous if and only if it is both upper and lower

semi-continuous [I].

A multifunction F:X/Y is polnt-closed [I] if and only if F(x) is a closed subset

of Y, for each x X.

If FI, F
2 are two multlfunctlons from X to Y, by FIV F2, we denote the

multifunctlon from X to Y defined by (FlY F2)(x) Fl(X) U F2(x). Also, by FIAF2, we

denote the multifunction from X to Y defined by (FIA F2)(x) FI(X)NF2(x in

Kuratowski [2].

In the following, by M(X,Y), we denote the set of continuous multifunctions.

Also, by U(X,Y), we denote the set of polnt-closed upper semi-contlnuous

multlfunctlons.
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Let K be a compact subset of X and P an open subset of Y. Let <K,P>

{F e M(X,Y):F(x) P # 0 for all x E K} and [K,P] {F e M(X,Y):F(K)C p}. The

topology T on M(Y,Z) generated by the sets of the form <K,P> and [K,P], where K is
co

compact in X and P is open in Y, is called the compact open topology on M(X,Y) [I].

*The topology T on U(X,Y) generated by the sets of the form
co

[K,P] {F e U(X,Y):F(K)c P}, where K is compact in X and P open in Y, is called the

compact-open topology on U(X,Y).

For simplicity, in what follows, we use the symbols M(X,Y) (U(X,Y)) to denote the,
topological spaces (M(X,Y), T ((U(X,Y),T )).

CO CO

We give now the definition of Wilker spaces that we will use in the following: A

topological space X satisfies the Wilker’s condition (D) For every compact subset KcX

and for every pair of open subsets AI, A2 e X with k AID A
2

there are compact

subsets K c A1 and K2C A
2 such that KcKIU K

2 is called a Wilker space (Wilker [3]).

It can be easily proved that the class of Wilker spaces contains properly the class

of T
2 spaces and also the class of basic locally compact spaces (i.e. those spaces

every point of which has a neighborhood basis consisting of compact sets). In [4]

basic locally compact spaces are called locally quasl-compact spaces and in Murdehswar

[5] they are called spaces which satisfy condition L2.

In this paper we prove that if X is a Wilker space, then the V-semilattices

(M(X,Y), c), (U(X,Y), are topological, i.e., we prove the continuity of the join

operation V It is also noticed that if X is a normal space, (U(X,Y), is a

semilattice [4,p.4]. Finally, if X is a Wilker normal space, we prove that the meet

operation A is continuous, i.e., (U(X,Y),) is a topological semilattice [4, p.274].

The worth of the above results relies on the fact that the space U(X,Y) (M(X,Y))

can be considered as a topological lattice (topological V-semilattlce [4,p.4]).

2. MAIN RESULTS.

PROPOSITION 2.1. Let X be a Wilker space. Then the operation

(FI,F2) FIVF2:M(X,Y M(X,Y) M(X,Y) is continuous. Thus the V-semilattice

(M(X,Y), ) is topological.

PROOF. Let (FI,F 2) e M(X,Y) M(X,Y) and FIV F
2

e [K,P]. Then (FIV F2)(K)c P,

which implies that FI(K) P and F2(K) P. Hence F e [K,P], F2e [K,P] and it can be

easily proved that (G1,G2) e [K,P] [K,P] implies that GIV G
2

e [K,P].

Let now FIV F
2

e <K,P>. Then (FIV F2) (x) P # 0 for each x e K. So we have

KC FI(P UF2(P ). But since X is a Wilker space there are compact subsets KI, K
2 of X,

such that KiFi(P), i I, 2, and K CKIU K2. So F e <KI, P>, F
2

e <K2, P>. We

prove now that (GI, G2) e <KI,P> <K2, P> implies that GIV G
2

e <K, P>.

Let (GI, G2) e <KI, P> <K2, P>. Then, KiC Gi(P), i I, 2, which implies that

KCKIU K2CG I(P)U G2(P (GIV G2) (P). Therefore GiV G
2

e <K, e>.
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The proof of the followlng Proposition is the same as that of Proposition 2.1

(first part) and It is omitted.

PROPOSITION 2.3. Let X be a Wilker space. Then the operation

(FI,F2) FlY F2: U(X,Y) U(X,Y) U(X,Y) is continuous. Thus, the V-semilattice

(U(X,Y), c) is topological.

LEMMA 2.3. [2, p.179]. Suppose X is a normal space. Let FI:X Y, F2: X Y be

two point-closed upper semi-contlnuous multifunctions and P an open set in Y. Then,

(FIA F2)+(P) U{F(V) O F(W)}, where V,W are open in Y, VOW P.

PROPOSITION 2.4. Consider a Wilker normal space X. Let U(X,Y) be the set of

point closed upper semi-continuous multlfunctions equipped with the compact-open

topology. Then (U(X,Y), c) is a topological lattice.

PROOF. It suffices to prove that (U(X,Y), c is a topological similattice, i.e.,

that the meet operation A is continuous. According to the previous lemma, it is

obvious that the function (FI,F2) F F2:U(X,Y) U(X,Y) U(X,Y) is well defined,

i.e. that (U(X,Y), c is a semilattlce.

We prove now that A continuous.

Let an arbitrary (FI,F2) U(X,Y) U(X,Y) and let F1AF2
E [K,P], where K is compact

in X and P is open in Y. Then by the previous lemma

+
K c(FIA F2)+(P) U(F(V) O F2(W)}

where V,W are open in Y, V N W P. But since K is compact there are finitely many

sets V
i,

W
i, i l,...,n such that

n +U__ {F(Vi) 0 F2(Wi) },K
i

where Vi,Wi, are open in Y, Vlowi
P, I I,..., n. Moreover since X is a Wilker

space there exist compact subsets of X, Ki, i-l,...,n, such that

n+ + U KiK
i Fi(Vi)0 F2(Wi) and KC

i

+ +
Thus, KicFl(Vl) KiCF2(Wi) i -I,..., n.

Hence F [KI,Vl] F
2 [Ki, Wi] i I,..., n and finally

n n

(FI,F2) e i [Ki, Vi] x i=l [Ki Wi]
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It remains to prove that for each

n n

=i[K V 0(G G2) e
i=l [Ki,Wi] GIA G

2
e [K,P].

To prove this consider an aribtrary

n n
Iq l[Ki, Vi] i=l [K Wi](G G2) e

i

must be shown that K _(G G2)+(P). Let an arbitrary x e K. Then x e K.,I for someIt

+(Vi), +(Wi) we have that Gl(X)C V
i G2(x)c W

i
Soi, n. Since KiCG KiCG2

GI(X) NG2(x) (GI AG2) (x) ViN W.1 P" Thus, x e (GIAG2)+(P), which completes the

proof.
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