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ABSTRACT. A two-dimensional autonomous system

AX + (xTBlx, xTB2x)T

of differential equations with quadratic non-linearity is point dissipative, if there exists a positive

number y such that the symmetric matrices B and B2 are of the form

B B2
-Y [_b 0b112 b22 22

and bT( 70
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I. INTRODUCTION.

Consider the following two-dimensional autonomous dynamical system

kl allXl + a12x2 + b111x12 + 2b12xlx2 + b2x
222 2b21 +b222 a’21Xl + a22x2 + bllXl + 2XlX2

(1.1)

with quadratic non-linearity, where at least one of the symmetric matrices

bll b12
B2

bll b12
B and=/ 2" 2

b12 b22 b12 b22

is non-zero. We are interested in deriving sufficient conditions on the matrices

(all a12/ BaA
a21 a22j,

and B2, so that the system (1.1) is point dissipative. That is,

there exists a bounded set G such that the orbit of each solution of (1.1) eventually enters the set G

and remains there.
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II. THEOREM 1.

The system (1.1) is point dissipative if the following conditions are satisfied:

There exists a number y > 0 such that (i) the matrices B and B2 are of the form

0 b12 2b12 "2
B B2

=-’)(

bl12 b22 -b22 0

In order to prove the above theorem, we need the following lemma:

LEMMA. If the matrices A, Bl, and B2 satisfy the conditions (i) and (ii) in Theorem 1, then

it is possible to construct a function (Lyapunov) of the form

):

(i.e. to choose the real numbers p > 0, ct1, ctg) so that the set S {x Q(x) > 0}, where /is the

derivative of V with respect to the system (1.1), is bounded.

PROOF OF THE LEMMA. First, we choose p ?, where y is the positive number given in

conditions (i) and (ii) of Theorem 1. Q, for yet unspecified txl and ct2, is given by

/= gradV (k,2)

+ (1B1 2B2 x,

where aT (ct1,ct2). The cubic terms in : cancelled out because of condition (i). [Note that

without the vanishing of the cubic terms there is no possiblity that the set S can be bounded.] Let

We would like to show that C is negative definite. This we will accomplish by showing that -C is

positive definite. Again -C ((Pij)) is positive definite if and only if the symmetric matrix

2)qt2bl 2 ’)1.11 -23(Xlb12 ’b122 Tal2 a21)

Necessary and sufficient conditions for to be positive definite are

-2302b12 ’)all > 0 "1b22 a22 > 0 (2.1)
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and det (C) > 0. That is

-2"2b12 all /1622 a22 > 12 ";2622- ’a12 a21 (2.2)

We need to show that t and can be chosen so that both the inequalities (2.1) and (2.2) are

where E and E2 are two positivesatisfied. Setting -22b12 ’tll E2, 01b22- a22 e

numbers, the inequality (2.2) becomes

b
T

Ab + 4(b12)2 e + (b22) E2)2E1E2 >
16(b112)2 (b22

(2.3)

for the case bl2
# 0, b22 # 0.

4(b112)2 e + (b122)2 E2 > E1E2 using the standard inequality a2 + > 2 lal Ibl]
16(bl 2 2

2 (b22)

Since by condition (ii)bT( ) Ab < O, letting

El= E2=2 2(b122)28(b12)
(2.4)

the inequality (2.3) becomes ele2 > 0. Hence both the inequalities (2.1) and (2.2) are satisfied for

these choices of El and %. Again this implies that inequalities (2.1) and (2.2) are satisfied for

a22 + E1 al + E2
1 ,O12

Ot2

2 2"b12

where E and e2 are given by (2.4). Other choices of oq and ct2 are certainly possible. Thus C is

negative definite for the above choices ofx and ct2.

The case where only one of b12 or b22 is zero c.an be disposed of similarly. Note that both

and bg_2 cannot be zero, for in that case both the matrices B and B
9-
become zero matrices

contradicting our assumption. Now to see that the set S is bounded we come back to

Q -a 0 Ax + xTCx. Since the quadratic form xTCx is negative definite and -(xT Ax

is linear, there exists R0 > 0 such that " < 0 for all x with [[x[I > R0. Hence the set S {x Q(x) > 0}

must lie inside the circle S(0,Ro) and therefore bounded. Note that the set S contains all the critical

points of the system (1.1).
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PROOF OF THEOREM 1. To show that the system (1.1) is point dissipative under

conditions (i) and (ii), we need to exhibit a bounded set G so that the positive semi-orbit of each

solution of (1.1) eventually enters the set G and remains there. Using the lemma we first construct

the function

2 2v: (Xl-1) + f(x,_-%) --so that the set S {x Q(x) > 0} is bounded. We can choose r0 > 0, sufficiently large, so that

the level set (ellipse) V r0 contains in its interior the compact set S. We choose the interior of

V r0 as our bounded set G. Let P0 be a point outside of G and (t,P0) be the solution of (1.1)

with (0,P0) P0. Let V r be the level set of V passing through P0- Clearly r > r0. Let H be

the ring-shaped closed region formed by the two concentric ellipses V r0 and V r1. Since S

lies inside the ellipse V r0, Q < 0 on H. Therefore V((t,P0) is a decreasing function of on H.

Hence the positive semi-orbit C of (t,P0) must enter the ellipse V r and cannot go outside of

V r at any time > 0. Suppose that C+ cannot enter the region G. Then C must remain in H

for all time > 0. We need a contradiction resulting from this hypothesis. C+ must have limit

points in H. Let L(C+) be the set of all limit points of C+. L(C+) t::: H. We would like to show

that V is constant on L(C+). Let P1 and P2 be anY two points in L(C+), then there exists sequences

{tn} and {sn} such that

n-(ta’Po P1 t(sa’Po) P2"
Since V((t,P0) is decreasing in H and by continuity V has a lower bound in H, lim V((t,P0))t--.

must exist. Let this limit be q. Then

q=nlimV((tn,Po)) nlimV(q)(sn,Po))

and so by the continuity of V, V(P1) V(P2) q. That is V(P) q on L(C+). Let P e L(C+) and

(t,P) be the solution of (1.1) with (0,P) P. Then (t,P) c: L(C+). But r(p) Q((0,P)

dq
V(W(t,P))) It__0 -- 0 which implies a contradiction of < 0 on H. Hence C must enter

G eventually and cannot go out of G by the decreasing property of V((t,P0)) and therefore

remains in G. This completes the proof.
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