SUPERSETS FOR THE SPECTRUM OF ELEMENTS IN EXTENDED BANACH ALGEBRAS

MORTEZA SEDDIGHIN

Division of Natural Sciences Lewis Clark College Lewiston, ID 83501

(Received June 1, 1987 and in revised form October 21, 1987)

ABSTRACT. If A is a Banach Algebra with or without an identity, A can be always extended to a Banach algebra \overline{A} with identity, where \overline{A} is simply the direct sum of A and \boldsymbol{C} , the algebra of complex numbers. In this note we find supersets for the spectrum of elements of \overline{A} .

KEY WORDS AND PHRASES. Banach Algebra, spectrum of elements and quasi-singular elements.

1980 AMS SUBJECT CLASSIFICATION CODE. 46H99.

1. INTRODUCTION.

Let A be a Banach algebra. Then we know that the set $\overline{A} = \{(x,\alpha): x \quad A, \alpha \text{ complex}\}$ together with the operations $(x,\alpha) + (y,\beta) = (x + y, \alpha + \beta)$ and $(x,\alpha) (y,\beta) = (xy + \beta x + \alpha y, \alpha\beta)$, and norm $|| (x,\alpha) || = ||x|| + |\alpha|$ is a Banach algebra, whose identity element is (0,1). Although this is usually done for algebras A without identity, to extend them to algebras with identity; we can also start with a Banach algebra A with identity (In this case the identity of A is no more an identity for \overline{A}).

2. MAIN RESULTS.

DEFINITION 2.1. An element x in a Banach algebra A is called quasi-regular if xoy = yox = 0 for some $y \in A$, where xoy = x + y - xy. xoy is called the circle operation. x is called quasi-singular if it is not quasi-regular. For an element x in A, the special radius of x is defined by

$$r(x) = \lim_{n \to \infty} ||x^n||^{1/n} .$$

THEOREM 2,1. Let \overline{A} be the extension of A, as above and let $\delta_{\overline{A}}$ ((x, \alpha)) denote the spectrum of (x, \alpha) in A, then

$$\delta_{\overline{A}}((x,\alpha)) \subseteq \{\alpha\} \cup \delta_{A}(x + \alpha)$$
,

. .

if A already has an identity, and

$$\delta_{\overline{A}}((x,\alpha)) \subseteq \{\lambda: |\lambda - \alpha| \leq r(x)\}$$

if A does not have an identity.

PROOF. First suppose A has an identity. Let λ be a complex number, then (x, α) - (0, λ) = (x, $\alpha - \lambda$). If $\lambda \neq \alpha$, then

$$(x, \alpha - \lambda)$$
 $(y, \frac{1}{\alpha - \lambda}) = (xy + \frac{1}{\alpha - \lambda} x + (\alpha - \lambda) y, 1).$

Now, if $\lambda \neq \alpha$ and $\lambda \notin \delta_{\underline{A}}(x + \alpha)$, then the equation

$$xy + \frac{1}{\alpha - \lambda} x + (\alpha - \lambda) y = 0$$
 (2.1)

has a solution. To see this, write (2.1) as $(\alpha - \lambda)xy + x + (\alpha - \lambda)^2 y = 0$ or $(\alpha - \lambda)[x + \alpha - \lambda]y = -x$ or $y = \frac{1}{\alpha - \lambda}(x + \alpha - \lambda)^{-1}(-x)$. $(x + \alpha - \lambda)^{-1}$ exists since $\lambda \notin \delta_A(x + \alpha)$.

This implies ~ { α } \cap ~{ $\delta_A(x) + \alpha$ } \subseteq ~ $\delta_{\overline{A}}((x, \alpha))$, and, therefore, we have:

$$\delta_{\overline{A}}((x,\alpha)) \subseteq \{\alpha\} \cup \delta_{A}(x+\alpha).$$

Now suppose A does not have an identity and let $\lambda \neq \alpha$. If $\frac{1}{\alpha - \lambda} \times is$ quasi-irregular, then there exists an element z in A such that:

$$\frac{1}{\alpha-\lambda} xz + \frac{1}{\alpha-\lambda} x + z = 0.$$

If we take $y = \frac{1}{\alpha - \lambda} z$, then we have:

$$xy + \frac{1}{\alpha - \lambda} x + (\alpha - \lambda) y = 0.$$

Hence, $-\{\alpha\} \land -\{\lambda \mid \lambda \neq \alpha : \frac{1}{\alpha - \lambda} \times \text{ is quasi-singular}\} \subseteq -\delta_{\overline{A}}((x, \alpha))$. For an element a in a Banach algebra, the inequality r(a) < 1 implies a is a quasi-regular with quasiinverse $a = -\sum_{\substack{\alpha = 1 \\ n = 1}}^{\infty} a^n$ (Rickart [1]). Hence, for an element $\frac{1}{\alpha - \lambda} \times \text{ to be quasi-}$ singular, it is necessary to have $r(\frac{1}{\alpha - \lambda} \times) \ge 1$; that is $r(x) \ge |\lambda - \alpha|$

REFERENCES

1. RICKART, C.E. <u>General Theory of Banach Algebras</u>, D. Van Nostrand, Princeton, (1960).

824