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ABSTRACT. If A is a Banach Algebra with or without an identity, A can be always

extended to a Banach algebra A with identity, where A is simply the direct sum of A

and , the algebra of complex numbers. In this note we find supersets for the

spectrum of elements of A.
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INTRODUCTION.

Let A be a Banach algebra. Then we know that the set A {(x,): x A, complex}

together with the operations (x,) + (y,8) (x + y, +8) and

(x,) (y,B) (xy + 8x + ey, B), and norm II (x,)II Ilxll + II is a Banach algebra,

whose identity element is (0,I). Although this is usually done for algebras A

without identity, to extend them to algebras with identity; we can also start with a

Banach algebra A with identity (In this case the identity of A is no more an identity

for A).

2. MAIN RESULTS.

DEFINITION Z.I. An element x in a Banach algebra A is called quasl-regular if

xoy yox 0 for some y A, where xoy x + y xy. xoy is called the circle

operation, x is called quasl-slngular if it is not quasi-regular. For an element x

in A, the special radius of x is defined by

I/n
r(x)-- lira II xn II

n-o

THEOREM 2,1. Let A be the extension of A, as above and let 6 ((x,)) denote the

spectrum of (x,) in A, then

if A already has an identity, and

X ((x,a)) {: I- cl =< rCx)}
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if A does not have an identity.

PROOF. First suppose A has an identity.

(x,u) (0,l) (x, a-A). If # a, then

Let % be a complex number, then

(x, a- ) (y, (xy + x + (a- )y,l).

Now, if # a and 6
A (x + ), then the equation

xy +_I x + (a A) y 0

2
has a solution. To see this, write (2.1) as ( A)xy+x+ (- A)

-I(a )[x + ] y -x or y a--(x+a- ) (-x). (x+a- )-I-
6
A (x + a).

This implies {a} ~{6A(X) + a} 6 ((x,a)), and, therefore, we have:

y 0 or

exists since

d; X ((x,a)) _c_ {a} U 6A(X + a).

Now suppose A does not have an identity and let A # a.

then there exists an element z in A such that:

(2.1)

If x is quasi-irregular,

a_-----X xz + x + z O.

If we take y z, then we have:

xy +--X_I x + (a ) y 0.

Hence, ~{a} ~{AI # a :/_ x is quasi-singular} ((x,a)). For an element

a in a Banach algebra, the inequality r(a) < implies a is a quasi-regular with quasi-

inverse a Z a
n (Rickart [I]). Hence, for an element x to be quasi-
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