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ABSTRACT. Let E be a topological vector space of scalar sequences, with topology T;

(E,T) satisfies the closed neighborhood condlt[on Iff there is a basis of

nelghborhoods at the origin, for , consisting of sets whlch are closed with respect

to the topology 7 of coordlnate-wlse convergence on E; (E,) satisfies the filter

condition Iff every filter, Cauchy wlth respect to , convergent with respect

to 7, converges with respect to .
Examples are given of solid (deflnltion below) normed spaces of sequences which

(a) fall to satisfy the filter condition, or (b) satisfy the filter condition, but not

the closed neighborhood condition. (Robertson and others have given examples

fulfilling (a), and examples fulfilllng (b), but these examples were not solid, normed

sequence spaces.) However, it is shown that among separated, separable solid

pairs (E,T), the filter and closed neighborhood conditions are equivalent, and

equivalent to the usual coordlnate sequences constituting an unconditlonal Schauder

basis for (E,T). Consequently, the usual coordinate sequences do constitute an

unconditional Schauder basis in every complete, separable, separated, solid

pair (E,).
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BACKGROUND AND DEFINITIONS.

Suppose that E is a topological vector space under two topologles, and .
Following Robertson [I] and Garllng [2], we shall say that (E,) satisfies the closed

neighborhood condition (with respect to 7) if and only if there is a base of

r-nelghborhoods of the origin which are -closed, and that (E,T) satisfies the filter
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condition (with respect to ) if and only if each filter in E, Cauchy with respect

to T, and convergent with respect to , converges with respect to T. (More exactly,

Robertson might say that (E,) satisfies the filter condition with respect to

and the identity injection of (E,T) into (E,).)

Observe that if (E,z) is complete, then (E,z) trivially satisfies the filter

condition, with respect to any . Although the result will not be used much here, a

theorem of Robertson [I], Theorem I) is worth noting: if (E,) is separated

(Hausdorff), and is finer than , then the completion of (E,T) is naturally embedded

in the completion of (E,) if and only if (E,T) satisfies the filter condition, with

respect to .
The importance of the closed neighborhood condition arises from a result of

Bourbaki ([3], Proposition 8, Chap. i., I), which may also be found in Treves [4]

(Lemma 34.2); this result is approximately Proposition I0 of [I], which we restate

here.

LEMMA I.I. l_f (E,) is separated, T is finer than , and (E,) satisfies the

closed neighborhood condition, then (E,z) satisfies the filter condition.

In this paper E will be a subspace of , the vector space of all scalar sequences

(the scalars may be either the real or complex numbers); will be the topology of

coordlnate-wlse convergence on E. This is the relative topology on E induced by the

product topology on m, thought of as a countable product of copies of the scalar

field.

If x E the solid hull of x is

A subset of is solid if and only if it contains the solid hull of each of its

elements. Throughout, E will be solid. A topology T on E (with which E becomes a

t.v.s.) will be called solid if there is a neighborhood base at the origin for

consisting of solid sets. When both E and are solid, we will refer to (E,z)

as a solid pair.

Note that if a norm p on E satlslfes

y E S(x)E implies that p(y) p(x), (I.I)

and E is solid, then the norm topology on E associated with p is solid. Conversely,

if E is solid, any solid norm topology on E is associable with such a norm (since the

convex hull of a solid set is solid); when satisfies (I.I) will be called a solid

norm.

LEMMA 1.2. Suppose that E is solid, and p is a solid norm on E. Let denote the

topology on E defined by p, and let U {x e E; p(x) }. Then (E, ) satisfies the

closed neighborhood condition if and only if the closure of U i__n_n (E,w)is bounded

in (E, ).
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PROOF. If the closure W of U in (E,) is bounded in (E,), then {rW; r > 0} Is

a neighborhood base at the origin in (E,) consisting of sets closed in (E,). If, on

the other hand, (E,)satslfes the closed neighborhood condtion, then the closure

in (E,) of some set rU, r > 0, is contained in U; thus Wc_r-Iu.
The coordinate projections on E are the functlonals f de[ined by

n

f (x) =x
n n

The following lemma is well known. A proof of the equivalence of (a) and (c) appears

in Johnson and Mohapatra [5] (Prop. 2.5).

LEMMA 1.3. Suppose that (E,) is a solid pair. The following are equivalent.

(a) The coordinate p.roJectlons are continuous on E.

(b) is finer than 7.

(c) (E,) is separated.

The coordinate sequences are the sequences en e defined by en(m)
m, e (m) 0 otherwise. We shall assume throughout that E contains the coordinate

n
sequences. The finite sections are the functions P E E defined by

n
P (x) Y. xkek. Following the terminology in Kothe [6] if for each x e E the

kgn

sequence (Pn(X)) converges to x in

(E, ), we will say that (E, ) is AK (for Abschnitt-Konvergenz). When (E, ) is a

separated solid pair, (E,)is AK If and only if the coordinate sequences form a

Schauder basis for (E,); the solidity of E and then guarantees that the basis is

unconditional.

The following is Proposition 2.9 of [5].

LEMMA 1.4. Suppose that (E,) is an AK solid pair. Then (E,) satisfies the

closed neighborhood condition.

In the next section we give two examples of solid, solidly normed spaces

E the first fails to satisfy the filter condition, and the second satisfies the

filter condition, but not the closed neighborhood condition. The object is to augment

the supply of such examples; see Lindenstrauss and Tzafrlfi [7], Garllng [2], and

Gaposhkin and Kadets ([8]). A far as we know, these are the first known (or, in the

case of Example 2.1, noticed) such examples in which (E,x) is a solid, solidly normed

sequence space, and is the topology of coordlnate-wlse convergence on E.

The norm topology in Example 2.1 is not consistent in the sense of Ruckle [9]; by

Theorem of [2] It could not possibly be. The norm in Example 2.2 is consistent.

In section 3 it is shown that among separable, separated solid pairs (E,z), the

filter and closed neighborhood conditions are equivalent, and are equivalent to (E,)

being AK. As an easy consequence, it follows that in every complete separable

separated solid pair (E,), the coordinate sequences form an unconditional Schauder

basis of (E,z). (Thus, the famous separable Banach spaces with no Schauder basis,
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while possibly realizable as sequence spaces, are not realizable as solid, solidly

normed sequence spaces.)

In Section 4 we discuss a problem mentioned in [5], still unresolved, related to

the results of this paper, and one other problem that arises from these results.

2. EXAMPLES.

EXAMPLE 2.1. Let E {x ; (nx) is bounded}. Let p be defined by
n

p(x) (.[x 12) 1/2 + lira suplnXnl.n n

Clearly E is solid, and p is a solid norm on E. Let x
(k)

e E be defined by

(k) -I
x n if n k,
n

(k)
x 0if n <k.

Then (x(k))
k

is Cauchy with respect to p, converges to zero in (E,), and O(x (k)) >
for all k; thus, by Lemma 1.3, (x (k)) cannot converge tn (E,’), the norm topology

associated with p. Consequently, (E,) does not satisfy the filter condition.

EXAMPLE 2.2. Partition the positive integers into infinite sets Ji,J2, For

each n, define Pn on by

Pn(X)--sup IXkl + n lira sup
keJ k J

n n

Let E {x : . Pn(X) < } and define p on E by
n=l

O(x) [. Pn(X)"

Clearly E is solid and p is a solid norm on E; E is an "I direct sum" of the spaces

Jn), each isomorphic to , so E, with , is complete. Consequently, (E,)

satisfies the filter condition, where, as usual, T is the topology determined by p.

For each n, let gn denote the characteristic sequence of Jn; i.e. gn(m) if

m Jn’ and gn(m) 0 otherwise. Note that (gn n + for each n. Also,

O(Pk(gn )) for each k, and gn is the limit, in (E,), of (Pk(gn))k By Lemma 1.2,

(E,) does not satisfy the closed neighborhood condition.

3. ON SEPARABLE SOLID PAIRS.

THEOREM 3.1. Suppose that (E,) is a separable, separated solid pair. The

following are equivalent.

(a) (E,) satisfies the filter condition.

(b) (E,) satisfies the closed neighborhood condition.

(c) (E, I) is AK.

PROOF. By Lemma 1.3 and I.I, (b) implies (a), and (c) implies (b) by Lemma 1.4.
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What remains to be shown is that (a) implies (c).

Suppose that (E,x) is not AK. Then there is some x E E such that the sequence

(P (x)) does not converge to x in (E x). But (P (x)) does converge to x In (E,);n n
therefore, if (a) holds, it must be that (P (x)) is not Cauchy in (E,x). Therefore,n
there is a solid T-nelghborhood U of the origin in E and two sequences (nt), (mt) of

positive integers satisfying

and

n
t

< m
t nt+

P (x)- P (x) U, t 1,2,m
t

n
t

If t < r then n
t < m

t nr, so Pint(x) Pnt(X) e S(P (x) P (x));
n n

tr
consequently, Pn (x) Pnt(X) U for r > t, because P (x) P (x) U and U is

r mt nt
solid.

For each t, let

B
t

{n
t

+ nt+1 }"

For each set T of positive integers, let y(T)E be defined by

yn(T)= x if n s UBn tT t’

Y(T) 0 otherwise.
n

Each y(T) is in the solid hull of x, so y(T) E for each T. If T T
2 are two

(T (T
2sets of positive integers, then the solid hull of y y contains

(T (T
2P (x) P (x) U, for some t; consequently y ynt+ n

t

Suppose V is a balanced, open T-nelghborhood of the origin in E

satisfying V + VU. The paragraph preceding Implies that {y(T)+ V; T is a set of

positive Integers is an uncountable collection of mutually disjoint r-open non-empty

subsets of E; consequently (E,x) is not separable. We have arlved at this conclusion

assuming (a) and not (c). Consequently, (a) implies (c), when (E,x) satisfies the

hypothesis of the theorem.

COROLLARY 3.1. If (E,x) is a complete separable, separated solid pair,
then (E,x) is AK.

PROOF. If (E,x) is complete, then (E,x) satisfies the filter condition.

It has been pointed out to the author that the hard part of the theorem above,
(a) implies (c), resembles a corollary of a well known result about Banach lattices

([7], Proposition l.a.7). Since the scalars may be the complex numbers here, it would
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be reckless to deduce the theorem from the Banach lattice result, even in the special

case in whlch (E,T) is a Banach space, but the point is well made; the author admits

to having rediscovered an argument and a result already in the literature, in a

somewhat different settlng. The author is of the opinion that such rediscoveries, if

recognized as such, do no harm, and may serve to stimulate interest in the original.

4. REMARKS AND PROBLEMS.

Suppose (E,T) is a solid pair and A (a is an infinite matrix with non-
mn

negative entries and no zero columns. Followlng the notation of Johnson and Mohapatra

[5, I0, II], we set

nor-A-l(E) {x : Alx ( amnlXnl)m E}.
n

-I
Then nor-A (E) is a solid subspace of ; if we require each column of A to be in E,

-I
then nor-A (E) contains the coordinate sequences; further, nor-A (E) is naturally

-I
equipped with a solid t.v.s, topology, nor-A (T), obtained by taking as a

neighborhood base at the origin, the sets

nor-A-l(u) {x e w; A[x[ U},

as U ranges over solid T-neighborhoods of the origin in E.

-I -!
In [5] it is shown that (nor-A (E), nor-A ()) will inherit a great deal

from (E,z) (the property of being AK, for instance), but there seems to be a

mysterious difficulty regarding completeness. In [5] (Theorem 2.13) and [II] (Prop.

I.I) it is shown that (nor-A-l(E), nor-A-l()) is complete when (E,z) is, provided

either that (E,T) satisfies the closed neighborhood condition, or that the rows of A

are finite sequences. (In [II], A is lower triangular, but this condition can be

relaxed.) Richard Haydon and Mireille Levy have since shown the author, in a private

communication, that these provisions can be omitted when (E,T) is a Banach space, and

their proof extends to the cases in which (E,T) is locally convex and metrizable. In

general, however, the problem remains unresolved.

PROBLEM 4.1. Suppose (E,T) is a separated, complete solid pair and A is an

infinite matrix with non-negative entries, no zero columns, and every column in E. l__s
-I(nor-A (E), nor-A (T)) necessarily complete?

The remarks preceding say that if a counterexample can be found, then A will have

to have some rows (indeed, infinitely many rows) with infinitely many non-zero

entries, and (E,) will not be locally convex and metrizable.

It is shown in [5] (Theorem 2.10) that if (E,T) satisfies the closed neighborhood
-I -I

condition, then so does (nor-A (E), nor-A

PROBLEM 4.2. Suppose that (E,z) and A are as in Problem 4.1, except that (E,T)
is not necessarily compl@te.. Suppose that (E,z) satisfies the filter condition. Does
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-I -I(nor-A (E), nor-A ()) necessarily satisfy the filter condition?

Problems 4.1 and 4.2 are equivalent in the following sense. Suppose that C is a

class of separated solid pairs, with the property that if (E,T) c C and (E,)

satisfies the fiter condition, then the completion (E,)of (E,)also is an element

of C. (By Robertson’s Theorem ([I]), (E,) will be a sequence space; it is

straightforward to see that (,) will be a solid pair). If the answer to the

question in 4.1 or 4.2 is yes, whenever (E,T) is confined to C, then the answer to the

question in the other is yes, whenever (E,) is in C (with A fixed, or allowed to

range over some selection of matrices). Thus, for instance, the result of Haydon and

Levy mentioned above implies that when (E,) Is locally convex, metrlzable, and

satlfles the filter condition, and A satisfies the hypothesis of Problem 4.1 with

respect to(E,), then (nor-A (E), nor-A ()) sat[sfles the filter condition. For

another instance, the answer to 4.2 is yes whenever the rows of A are finite

sequences.

We omit the proof of the equivalence. In one direction the proof uses the

theorem of Robertson mentioned above, and the fact that the completion of a solid pair

s a solid pair, when it is a sequence space. In the other direction the proof

resembles that of Theorem 2.13 of [5].

Finally, we note a problem left unresolved by the results of sections 2 and 3.

PROBLEM 4.3. Does there exist a separable, separated solid pair (E,), preferabl
normed, which does not satisfy the filter condition?

The space in Example 2.1 is not separable. To see this, let Dr; r c c} be a

collection of infinite sets of positive integers indexed by the continuum c with the

property that r r 2 implies that K 0 K is finite. (Such a collection may be
r r 2

obtained by putting the positive integers in one-to-one correspondence with the

rational numbers, and for each real number r, taking K to be the elements of a
r

x(r)sequence of distinct rationals convergent to r.) For each r c, let e be

x(r)defined by x 1/n if n K 0 otherwise. Then, with E and p as in Exampler’ n

2.1, {x(r): r E e} is an uncountable collection of elements of E, with

(r (r 2p(x x ) for r r2.

The theorem of section 3 bears on Problem 4.3; it suffices to find a separable,

separated solld pair (E,z) which is not AK. The proof of that theorem says more; for

each x E E, the sequence (Pn(X)) will have to be Cauchy.
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