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ABSTRACT. Let R be a commutative ring with unity. In this paper, we prove that R is

an almost PP-PM-rlng if and only if R is an exchange PF-rlng. Let X be a completely

regular Hausdorff space, and let BX be the Stone ch compactlfication of X. Then we

prove that the ring C(X) of all continuous real valued functions on X is an almost PP-

ring if and only if X is an F-space that has an open basis of clopen sets. Finally,

we deduce that the ring C(X) is an almost PP-ring if and only if C(X) is a U-rlng,

i.e. for each f &C(X), there exists a unit uC(X) such that f ulf I.
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I. INTRODUCTION.

All rings considered in this paper are commutative with unity. Recall that R is

called a PF-ring if every principal ideal aR is a flat R-module, and it is called a

PP-rlng if every principal ideal mR is a projective R-module. An ideal I of a ring R

is called pure if for each x & I, there exists y I such that xy x. It is well-known

that R is a PF-rlng if and only if for a R, annihilator ideal, ann(a) is pure, see
R

Ai-Ezeh ill. Also it is well-known that R is a PP-rlng if for each aR,ann(a)
R

is generated by an idempotent. In an earlier paper we introduced almost PP-rlngs as a

generalization of PP-rlngs. A ring R is called an almost PP-rlng if for each aR,

ann(a) is generated by idempotents of R. In fact, one can easily show that R is an
R

almost PP-rlng if and only if for each a R and b ann(a), there exists an idempotent
R

e in ann(a) such that be b.
R

A ring R is called an exchange ring if every element in R can be written as the

sum of a unit and an idempotent. Exchange rings have been studied extensively, see

for example Monk [2] and Johnstone [3]. Our aim in this paper is to study the
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relationship between exchange PF-rlngs and almost PP-rlngs. To carry out our study we

need two more definitions. A ring R is called a PM-rlng if every proper prime ideal

of R is contained in a unique maximal ideal of R. it is well-known that the ring of

all continuous real valued functions over a completely regular Ilausdorff space X,

C(X), is a PM-rlng, see Gillman and Jerlson [4]. A compact Hausdorff and totally

disconnected space is called a Boolean (or Stone) space.

2. MAIN RESULTS.

First, we state a theorem that was proved by Johnstone [3].

THEOREM 2.1 A ring R is an exchange ring if and only if it is a PM-ring and the

space of maximal ideals of R, Max(R), is a Boolean space.

THEOREM 2.2 Let R be an exchange PF-rlng. Then it is an almost PP. PM-rlng.

PROOF. Let R be an exchange PF-rlng. Let a R, and let bann(a). Since R is a
R

PF-rlng, there exists c ann(a) such that bc b. Because R is an exchange ring,
R

2 -I -Ic=e+u, where e =e and u is a unit in R. Hence cu eu + I, and so

e cu (I e). Since ac O, a(l e) O. But bc b, so b(l e) ub since c

-I
e + u. Therefore bu (I e) b. Consequently,

b(l e) bcu (I e) bu (I e) b. Since e ann(a), R is an almost
R

PP-rlng. By Theorem l, R is a PM-rlng. Hence R is an almost PP-PM-rlng.

Now we want to establish the converse of theorem 2.2. Clearly, every almost PP-

ring is a PF-rlng. So, by theorem 2.1, it is enough to show that the space of maximal

ideals of R, Max(R), is a Boolean space. De Marco and Orsattl [5] proved that if R is

a PM-rlng, then Max(R) is a compact Hausdorff space. So it is left to show that for

an almost PP-PM-rlng R, Max(R) is totally separated. That is for any two distinct

maximal ideals M and M there exists a clopen set in Max(R) containing M but not MI.
THEOREM 2.3 Let R be an almost PP-PM-rlng. Then R is an exchange PF-rlng.

PROOF. By the above arguement, R is a PF-PM-rlng. reover, Max(R) is a compact

Hausdorff space. Let , M2Max(R) and M M2. Since R is a PM-rlng, there

exist a M and b M
2
such that ab O, see Contessa [6]. Because R is an almost PP-

there exists an idempotent e ann(b) such that ea--a. Therefore eMring,
R

and eM2. Since e is an idempotent, U=D(e)- {ME Max(R): eM} is a clopen set in

Max(R) containing M but not M2. So, by theorem 2.1, R is an exchange PF-rlng.

For a completely regular Hausdorff space X, the ring of all continuous real

valued functions, C(X), is a PM-rlng, see Gillman and Jerlson [4]. Horeover,

Max(C(X)), is homeomorphlc to X, the St one-ech compatlflcatlon of X. Therefore C(X)

is an almost PP-rlng if and only if R is an exchange PF-rlng. Consequently, C(X) is

an almost PP-rlng if and only if it is a PF-ring and X is a Boolean space. l-Ezeh

et al [7], proved that C(X) is a PF-rlng if and only if X is an F-space, where X is

called an F-space if every finitely generated ideal is principal. It is well-known

that X is an F-space if and only if any to nonempty disjoint cozero sets are
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completely separated. Therefore, the ring C(X) is an almost PP-ring if and only if X

is an F-space and X is a Boolean space. In fact, BX [s a Boolean space if and only

if X has an open basis of clopen sets. Thus the ring C(X) is an almost PP-ring if and

only if X is an F-space that has an open basis of clopen sets.

Finally, Gillman and Ienriksen [8] defined the ring C(X) to be a U-ring if for

every f C(X), there exists a unit u C(X) such that f u lf I. In the same paper they

proved that the ring C(X) is a U-ring [f and only if X is an F-space and BX is a

Boolean space. So we get the following theorem.

THEOREM 2.4 The ring C(X) is an almost PP-ring if and only if it is a U-ring.

We end this paper by giving some examples illustrating the relationships

discussed above.

EXAMPLES.

I) Let N be the set of positive integers with the discrete topology. Let N be

its Stone-Cech compactification. The space BN\N is a compact F-space, see Gillman

and Jerisen [4]. Moreover, N\N is totally disconnected. Hence, the space NN
is Boolean. So the ring C(N\N) is an almost PP-rlng. llowever, it is not a PP-ring

’because the space \N is not basically disconnected, see Brookshear [9].

2) Let R
+

be set of nonnegative reals endowed with the usual topology. The

space R+\R+ is a compact, connected F-space, see Gillman and Henriksen [8]. Thus,

the ring C(X) has no nontrivial idempotents. So, if it were an almost PP-ring, it

would be an integral domain which is not the case because it has plenty of zero

divisors. Consequently, C(BR+\R+) is a PF-rings that is not an almost PP-ring.

3) The ring of integers is an almost PP-ring that is not a PM-ring, and so not an

exchange ring.
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