
Internat. J. Math. & Math. Sci.
VOL. 12 NO. 4 (1989) 713-720

713

SOLUTION MATCHING FOR BOUNDARY VALUE
PROBLEMS FOR LINEAR EQUATIONS

JOHNNY HENDERSON

DeparUeent o Algebra, Comblnatorics and Analysis
Auburn University

Auburn, Alabama 36849 U.S.A.

(Received March 17, 1988)

n
ABSTRACT. For the linear differential equation, y(n) at(x)Y(i-1)’ (1.1),

where n > 3, solutions o multipont boundary value problems on an Interval [a,c]

are obtained, via the use of Liapunov-like functions, by matching solutions of

certain boundary value problems for (1.1) on [a,b] wlth solutions of other

boundary value problems for (1.1) on [b,c].
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I. INTRODUCTION.

We will be concerned with the existence of solutions of k-point boundary value

problems, 2 < k < a, on an interval [a,c] for the nth order linear differential

equation

yCn) y. a Cx)y(t-t) n_> 3, (.)

where the at(x) C[a,c].
The point b (a,c) will fixed throughout, and we will employ techniques

which match a solution Yl(X) of a (k-l)-point boundary value problem for (1.1)

on [a,b] with a solution Y2(X) of a 2-point boundary value problem for (1.1) on

[b,c] such that, y(x) defined by

y(x) IYl(X)’ a <_ x

_
b,

Y2(X)’ b x_ c,

is a solution of a k-point boundary value problem for (1.1) on [a,c].
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Solution matching techniques were first applied by Bailey, Shampine, and

Waltman [I] where they dealt with solutions of 2-polnt boundary value problems for

the second order equation y" f(x, y, y’) by matching solutlons of initial value

problems. Since then, a number of papers have appeared in which solutions of

3-point boundary value problems on [a,c] for the nth order ordinary differential
(n) (n-i)

equation y f(x, y, y’, y were obtained by matching solutions of

2-point problems on [a,b] with 2-point problems on [b,c]; see, for example, Barr

and Sherman [2], Das and Lalli [3|, Henderson [4], Moorti and Garner [5], and Kao,

Murthy and Rao [6]. In those papers [2 6], a monotoniclty condition imposed on f

plays an important role in the solution matching techniques in obtaining solutions

of the 3-point problems. For example, in obtaining solutions of certain 3-point

conjugate problems, 8arr and Sherman [2] assumed that f satisfies the conditions:

Un_1 < Vn_l, and (-l)n-J(uj vj) 0, j 1, 2, n-2, imply

f(x, Ul, Un_l, w) < f(x, vl, vn_l, w), for all x (a,b] and all w R,

and

(ii) Un_ < Vn_l, and uj < vj, j I, 2, ..., u-2, Imply

f(x, ul, ..., Un_l, w) < f(x, Vl, Vn_l, w), for all x e [b,c) and all w e

Moorti and Garner [5], by assuming (t) and (1t) with respect to third order

equations, obtained solutions of certain 3-point focal problems by matching solu-

tions. Das and Lalli [3] also assumed (t) and (Ii) with respect to third order

equations, (however in relaxing other assumptions which were made in [2], the proof

of Theorem 2.1 In [3] does not appear to be valid). In the paper by ao, Murthy

and ao [6], conditions (t) and (tt) were modified some and solution matching was

applied to obtain solutions of 3-point conjugate problems for third order ordinary

differential equations. Then Henderson [4] generalized the onotontctty conditions

of [6] and used solution matching to obtain the existence of solutions of a large
(n)

class of 3-point boundary value problems on [a,c] for y f(x, y, y’,
Ca-i)

However, to obtain solutions of k-point problems on [a,c], for 3 < k < n, by

matching a solution Yl(X) on is,b] with a solution Y2(x) on [b,c] under

assumptions (t) and (ti) or the more general monotontcIty conditions in [4], one
(n-2) (u-2)

cannot necessarily conclude tt Yl (b) Y2 (b), hence cannot conclude a

solution on [a,c]. For the linear equation (1.1), usl Llapunov-ltke functions,

Barr and Miletta [Tlmatched solutions of (n-l)-potnt boundary value problems with

solutions of 2-point boundary value problems thus obtaining solutions of n-point

boundary value problems. In this paper, using techutques similar to those of Barr

and Mtletta [7], we obtain solutions of k-point boundary value problems for (1.1) on

[a,c]. In particular, given 2 < k n, positive integers ml,...,mk such that

k
m
i

n and m
k

=I, points a x < < Xk_ b < x
k

c, and YIJ
R

]

for (I.I) satisfying
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(i)
y (xj) YiJ’ 0 <_. i <_. mj -I, < j < k-l, y(xk) Yo,k’

and for e {O,l,...,n-2} fixed,

(1.2)

(i)
0 < i < mj I < j < k-l, yC)CXk)= Y0,k"y (xj Ylj C1.3)

The existence of unique solutions of certain (k-l)-point and 2-point boundary

value problems for (I.I) used in the matching to obtain solutlons of(l.l), (1.2) and

(I.I),(1.3) will be established through the use of Liapunov-lie or control

func tlons.

DEFiNiTiONS. Given H 0 and [a,ll

_
[a,cJ, a control function

V
M (x,Yl,...,yn): [a,8] n R

is a function which is continuous, locally Lipschitz with respect to (yl,...,yn)
and satisfles

i) V
M (x,Yl,...,yn) 0, if Yn-I M,

it) V
M (x,Yl,. ,yn) > O, if Yn-I > M.

’Yu) and a solution y(x) of the differential equationCorresponding to VM(x,yI,
1. ), def

V (x,y(x),...,y(n-l)(x)) llm inf iV (x+h,y(x+O),...,y(n-l)(x+h))
h/O+ h

-v (x,y(x),...,y(n-1)(x)) ].

Extensive use will be made of the following lemma. Its proof is a simple

extension of the one given for n=l in Yoshizawa [3].

LEMMA I.I. Suppose that y(x) is a solution of (1.1), and that for some M > 0

and [a,8]( [a,c], VM(X,Yl,...,yn) is a control function. Then

(n-l)
VM(X,y(x),...,y (x)) is nondecreaslng, (nonlncreaslng), if and only if

(n-l) (n-l)
v’(x,y(x) ,...,y (x)) _> o, (v(x,y(x),...,y (x)) _< 0).

In section 2, we carry out the construction for matching solutions of

(k-l)-point boundary value problems with 2-point boundary value problems in obtain-

ing a solution of (I.I), (1.2). Then in section 3, results completely analogous to

those obtained in section 2 are stated for solutions of (I.I), (1.3).

2. EXISTENCE OF SOLUTIONS OF (I.I), (1.2).

In this section, for 2 < k n, let ml,...,mk be positive integers such that

k

I mi= n aad m
k

=I. Let a < xI<...< Xk_ b < xk_< c and Y
iJ

e R
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0 < i < mj -1, < j < k be given. We match solutions y(x) of (i.l) satisfying

Ci) yCn-X)y (xj) Ylj’ 0 <_ i < mj -I, ! J <-- k-L, (Xk_l)=m, (2.1)

with solutlons z(x) of (I.I) satisfying
(1) y(i) (n--)

z (Xk_ I) (Xk_l) 0 < i < n- 3, z (Xk-l)=m’ z(xa)= Yo,k’ (2.2)

where m e R to obtain a solution of ([.I), (1.2). ’the use made of a family of

control functions In establishing existence of unique solutions of (k-l)-point and

2-polnt problems and in establishing des[tel monotone properties Is seen in the next

four theorems.

THEOREM 2.1. Assume that there exists a control function V0(x,y[...,y n) on

[a,b] such that V
0

(x,y(x),...,y (x)) > O, for all solutions y(x) of

Then for each m e R the boundary value problem for (I.I) satisfying

y{n-2) )=m, (2 3)y (xj) Yij’ 0 <_ i < mj -I, I <_ j <_ k-I, (Xk_
has a unique solution.

PROOF. It suffices to show that the boundary value problem for (I.I) satisfy-

tag y(t)(xj) O, 0 < i < mj_ < j < k-l, y(n-2) (xk_I) 0, has only me

trivial solution. Assume on the contrary that this boundary value problem has a

nontrivial solutlon y(x). It follows that there exist polnts
(n-2) (n-2) yCn-l)Xl < I < 2 < 3 < xk such that y (l)= y (3)= (2)= O, and

(n-2) (n-X)
y (x) or -y (x) has a positive local maximum at x 2"

(n-2)
Assume without loss of generality that y (x) has a positive local maximum

Ca-t)
at x 2" Now from our hypotheses, Vo(t, y(l),...,y (ri))

(n-I) (n-I)
V0(3, y(3), ,y (3)) 0 and V0(2, y(2),...,y (2)) > O. However,

(n-l) (n-t)
since V (x,w(x) ,y (x)) > O, Vo(x,y(x),...,y (x)) is nondecreastng;

(n-t)
consequently, Vo(Z 3, y(3),...,y (3)) > 0 whic is a contradiction. Thus, the

assertion of the theorem is true.

THEOREM 2.2. Assume that for each m R there exists a solution Yl(X,m) of

boundary value problem (I.I), (2.[). If for each M > 0, there exists a control
(n-)

function V(x,Yl,...,yn) on [a,bl such that VM (x,y(x),..., y (x)) >_ 0 for all

(n-2)
solutions y(x) of (l.1), then Yl (_l,m) is a strictly increasing function

of m.
(n-2) (n-2)

PROOF. Let mI< m
2

and assume Yl (Xk-l’m2) < Yl (Xk-l’ml)" Then

consider the nontrivlal solution w(x) Yl(X’ml) Yl(X’m2) of (I.I). It follows

(n-2)
that w (Xk_ I) > O.

Since w
(i)

(xj) O, 0 I_< mj -I, < J < k-l, it follows by successive
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applications of Rolle’s Tneore.a that there exists l g (Xl’Xk-I) such that

(n-2) (n-2) (n-2)
a (i)=0. Yet, from w (T I) O, the assumption that w (xk_I) > O, and

(n-t)
the fact that by construction w (Xk_ 1) m1- m2< O, we have that there exists

w(n-1)r2 (rl, xk_ I) such that (2) 0 and w(n-2)(x) has a positive local maximum

(n-2) (n-2)
at x T2" Now, let i < < r2< 8 < Xk_ De such that w (a) w

(n-2)
M and w (2) > M. Since there exists a control function VM, we have

(n-l) (n-l)
VM(a,w(a),...,w Ca))= VMC,w(),...,w (8)) 0 and

(n-l)
VM(2, w(2),..., w (2)) > O. However, since

V (x,w(x),...,w(n-l)(x)) is nondeereasing on [a,bl, it follows rat

VM(B,w(),... w(n-l)(B)) > O; again a contradlctlon.

(n-2)
Thus, w (xk_I) < 0, which In turn Implies that Yl

< yl(n-2)(Xk_l m2). The proof is complete.

(n-2)(XK_l,m 1)

REMARK. We remark that, under the hypotheses of Theorem 2.2, it can be argued

by finite Induction that yl(n-J)(Xk_l,m), 2 < j < n-_l are all strictly

increasing functions of m.

The next two theorems follow from arguments very similar to those used in

Theorems 2.1 and 2.2.

THEOREM 2.3. Let r ,...,r be given. Assume that there exists a control
mk_ n-3

(n-l)
function Wo(x,Yi,...,yn) on [b,c] such that W

0
(x,y(x),...,y (x)) 0 for all

solutions y(x) of (I.I). Then, for each m R the boundary value problem for

(I.I) satisfying

(i)
(x_I

Yi,k-l’ 0 i t <_ mk_:l l
r
i mk_ti i _< n-3

(=-2 )= =, y() (2.4)’Y Xk-1 Y0,k’

has a unique solution.

THEOREM 2.4. Let Yl(X,m) be as in Theorem 2.2 and assume that for each m R

there exists a solution Y2(x,m) of boundary value problem (I.I), (2.2). If for each

on [b,c] such thatM > 0, there exists a control function WM(X,Yl,...yn
(n-l)

W (x,y(x),...,y (x)) 0 for all solutions y(x) of (i.l), then

(n-2)
Y2 (Xk_l, m) is a strictly decreasing function of m.

PROOF. Let m
I < m

2
and then set w(x) =- Y2(x,m2) Y2 (x’ml)" Then argue as In

(n-2)
Theorem 2.2 that w (Xk_l) < 0.

We are now prepared to match solutions and otaln a solution of (I.I), (1.2).



718 J. HENDERSON

THEOREM 2.5. Assume that, for each m e R there exists a unique solution of

(I.I), (2.1) on [a,b], and that, for each m R there exists a solution of

(l.l), (2.2) on [b,c]. Assume, moreover, that the boundary value problem for (I.I)

on [b,c] satisfying
(i)

y (Xk_I) 0, I 0, n-3, n-l, y(xk) 0, (2.5)

has only the trlvlal solutlon. If for each M > O, there exlst control functlons

V (x,y ,...,y and W (x,y ,...,y on [a,b] and [b,c] respectively, such that
(n-l)

V(x,y(x),...,y (x)) _> 0 and W (x,y(x),...,y (x)) _> 0 for all solutions y(x)

of (1.I), then the k-polnt boundary value problem (1.1), (1.2) has a solution on

[a,c].
PROOF. If Yl(X’m) is a solution of te boundary value proolem (I.1), (2.1),

(n-2)
then by Theorem 2.2, Yl (Xk_l, m) is a strictly increasing function of m. We

(n-2)
contend, furthermore, that Yl (Xk_l, m) is a continuous function of m with

range all of R To see this, it suffices to show the latter; that is,

y (Xk_l,m) m e g R

Thus, let r R From Theorem 2.1, there is a unique solution u(x) of

(I.I), (2.3) satisfying

u (xj)-ytj, 0_< <aj , t_< j_<g- ,
u(n-2)(xk_1) r.

Consider now the solution w(x) u(x) -yl(x,u (Xk_l)) of equation (1.1). w(x)

satisfies the boundary conditions of type (2.1),

and

(1)
(xj)-0, 0_< i_<mj- , t_< J_<k- t,

(n-l) (n-l)
0w(n-l)(xk_l) u (xk_ 1) u (Xk_1

By the hypotheses of the theorem, #(x) 0, and hence

u(x) Yl(X,U
(n-l) (n-2) (n-l)

(Xk_l)). Consequently, Yl (Xk_l, u (Xk_l))
(n-2) { (n-2)( m)I m R}u (Xk_I) r, and it follows that r Yl xk-I

(n-2)
,m) is a strictly increasing, continuous function of mIn summation, Yl (Xk-I

with range all of R

Similarly, if as in Theorem 2.4, Y2(x,m) is a solution of the boundary value

problem (I.I), (2.2), then it will follow that, from the existence of unique
(n-2) m) is a strictly decreas-solutions of (I.I), (2.4) and (I.I), (2.5), Y2 (-I’

Ing, continuous function of m with range all of R Thus, there is a unique
(n-2)

m
0

R such that yl(n-2)(xk_1, m0)" Y2 (Xk_I, m0). Then
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I Yt(x’’O) a _< x _< D,

y(x)

(Y2(X,m0) b <_ x _< c,
is a solution of the boundary value problem (l.l), (l.2) on [a,c].

3. EKISCENCE OF SOLUTIONS OF (l.l), (1.3).

In this section, let k, ml,... ink, a Xl...< Xk_ b < xk_< c and YiJ c R
be as in the previous section. Let p e {0,1,...,u-2} be given. We state theorems

analogous to those in section 2 in which solutions y(x) of (l.l) satisfying

(i) y(n-t)y (xj) YlJ 0 i _< mj -I < j < k-l,
are matched with solutions v(x) of (I.I) satisfying

(Xk_I) m, (2.1)

(1) y(1) v(.), (Xk_,) (Xk_), 0 _< i _< n , v(n-t)(xk_)- ,, (Xk) Y0.k’ (3.i)

where m e R yielding a solution of (l.l), (I.3). We will omit the proofs of

these theorems. Moreover, Theorems 2.1 and 2.2 are applicable in this section.

THEOREM 3.1. Assume the hypotheses of Theorem 2.3. Then, for each m R

the boundary value problem for (1.1) satisfying

Yi,k-I 0 <_ i <_ mk_l
(I)

)= I (n-2)
)=

(p)
Y (Xk_ ,y (Xk_ m,y (Xk) Y0,k’ (3.2)

r
I ink_ < i < n-3)

has a unique solution

Theorem 3.2. Let Yl(X,m) be as in Theorem 2.2 and assume that for each m R

there exists a solution v(x,m) of boundary value problem (I.I), (3.1).If for each

M > O, there exists a control function WM(X,Yl,...,yn) on [b,c] such that

(n-l) (n-2)W
M (x,y(x),...,y (x)) > 0 for all solutions y(x) of (l.l), then v (Xk_2,
is a strictly decreaslug function of m.

THEO&EM 3.3. Assume that, for each m c R there exists a unique solution of

(I.I), (2.1) on [a,b], and that, for each m c R there exists a solution of

(I.I), (3.1) on [b,c]. Assume, moreover,, that the boundary value problem for

(I.I) on [b,c] satlsfylng

(1) y()y (Xk_I) O, I 0,..,n-3, n-l, (xk) 0,

has only the trivial solution. If for each H > 0, there exist control

functions VH(X, Yl,...,yn) on [a,b] and WM(X,Yl,...,yn) on [b,c], such that

(n-l) (n-l)
(x,y(x) ,y (x)) > 0 for all solutionsV’ (x,y(x) y (x)) > 0 and WM

y(x) of (l.l), then the boundary value problem (I.I), (1.3) has a solution on [a,c].
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