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ABSTRACT. For the linear differential equation, y = ¥ ai(x)y , (l.1),

1=l
where n > 3, solutions of multipoint boundary value problems on an interval [a,c]
are obtained, via the use of Liapunov-like functions, by matching solutions of
certain boundary value problems for (1.1) on [a,b] with solutions of other

boundary value problems for (1.1) on [b,c].
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1. INTRODUCTION.
We will be concerned with the existence of solutions of k-point boundary value
problems, 2 < k { n, on an interval [a,c] for the nth order linear differential

equation

n
¥ e T e oyt a3, (1.1)
gu1 1 =

where the ai(x) e Cla,c].
The point b ¢ (a,¢c) will fixed throughout, and we will employ techniques
which match a solution yl(x) of a (k-1)-point boundary value problem for (1.1)

on [a,b] with a solution yz(x) of a 2-§oint boundary value problem for (l.l) on
[b,e] such that, y(x) defined by
yl(x), al{x<b,
y(x) =
y2(x), b<{x<e
is a solution of a k-point boundary value problem for (l1.1) on [a,c].
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Solution matching techniques were first applied by Bailey, Shampine, and
Waltman [1] where they dealt with solutions of 2-point boundary value problems for
the second order equation y" = f(x, y, y') by matching solutions of initial value
problems. Since then, a number of papers have appeared in which solutions of
3-point boundary value problems on [a,c] for the nth order ordinary differential

-1
(n) = £(Xy, ¥y ¥'y eeey y(tl )) were obtained by matching solutions of

equation y
2-point problems on [a,b] with 2-point problems on [b,c]; see, for example, Barr
and Sherman (2], Das and Lalli [3], Henderson [4], Moorti and Garner [5], and Rao,
Murthy and Rao [6]. In those papers [2 ~ 6], a monotonicity condition imposed on f
plays an important role in the solution matching techniques in obtaining solutions
of the 3-point problems. For example, in obtaining solutions of certain 3-point
conjugate problems, Barr and Sherman [2] assumed that f satisfies the conditions:
(1) u_, <v_, and (-1)“'3(uj =¥ 20,3 =1, 2, e, -2, inply

f(x, Uis seer U 1o W) < (X, V., eeey Vi1’ w), for all x ¢ (a,b] and all w e R,

1
and
(11) Ul < V-1’ and u S.Vj’ j=1, 2, eee, n=2, imply
f(x, Us sees U s w) < f(x, Vi eeer Vg0 w), for all x € [b,¢c) and all w e R.

Moorti and Garmer [5], by assuming (i) and (1i) with respect to third order
equations, obtained solutions of certain 3-point focal problems by matching solu-
tions. Das and Lalli (3] also assumed (i) and (ii) with respect to third order
equations, (however in relaxing other assumptions which were made in [2], the proof
of Theorem 2.1 in [3] does not appear to be valid). In the paper by Rao, Murthy
and Rao [6], conditions (i) and (ii) were modified some and solution matching was
applied to obtain solutions of 3-point conjugate problems for third order ordinary
differential equations. Then Henderson [4) generalized the monotonicity conditions
of [6] and used solution matching to obtain the existence of solutions of a large
class of 3-point boundary value problems on [a,c] for y(n) = f(x, ¥y, ¥',
cosy y(u.l)).

However, to obtain solutions of k-point problems on [a,c], for 3 < k < m, by
matching a solution yl(x) on [a,b] with a solution yz(x) on [b,c] under
assumptions (i) and (ii) or the more general monotonicity conditioms in [4], one

-2 -2
cannot necessarily conclude that yl(n )(b) = Yz(n )

solution on [a,c]. For the linear equation (1l.1), using Liapunov-like functions,

(b), hence caanot conclude a

Barr and Miletta [7]matched solutions of (n-1)-point boundary value problems with
solutions of 2-point boundary value problems, thus obtaining solutions of n-point
boundary value problems. In this paper, using techniques similar to those of Barr
and Miletta [7], we obtain solutions of k-point boundary value problems for (1l.1) on
[a,c]. 1In particular, given 2 < k £ n, positive integers ml,...,mk such that

1§1 m, = o and mk =1, points a x1 € ees xk_1 =b < xk.ﬁ c, and yij e R,

0 5 1< mj -1, 1 < j { k, we are interested in solutions of boundary value problems

for (l1.1) satisfying
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1
y( ) (xj) =Yy 0Lt Lmy -1, 1 <y Kkl y(x) = Yo,k? (1.2)
and for p € {0,1,...,n=2} fixed,
(1) - - - (u) -
y (xj) Yipe 0< t&m =1, 1)<kl y (x) Yo,k* (1.3)

The existence of unique solutions of certala (k-1)-point and 2~point boundary
value problems for (1.1) used in the matching to obtain solutions of(l.l), (1.2) and
(1.1),(1.3) will be established through the use of Liapunov-like or coatrol

functions.

DEFINITIONS. Given M > 0 and [a,8] C [a,c], a control function

a
V“ (x’ylﬂ'Oyyn)3 [a,B8] x R + R

is a function which 1is continuous, locally Lipschitz with respect to (yl,....yn)

and satisfies

i) VM (x,yl,...,yn) = 0, if You1 = M,

i1) VM (x,yl,...,yn) > 0, if Yoe1 > M.
Corresponding to Vq(x,y ,...,yu) and a solution y(x) of the differeatial equation
I\

(1.1), define

1

Vé (x,y(x),...,y(n-l)(x)) = 1lim inf 2 [v (x+h,y(x+h),...,y(n.l)(x+h))
h+0+ h M
.vM (x,y(x),...,y(ncl)(x))].

Extensive use will be made of the following lemma. Its proof is a simple

extension of the one given for n=1 in Yoshizawa [3].

LEMMA 1.1. Suppose that y(x) is a solution of (l.1), and that for some M > 0
and [«,8] C [a,cl, VM(x,yl,...,yn) is a control function. Then

(o-1)

VM(x,y(x),...,y (x)) 1is nondecreasing, (nonincreasing), if and only if

(n-1) (a-1)

Vy(x,y(x)ye0e,y (x)) 20, (Vi(x,y(x),eensy (x)) < 0).

In section 2, we carry out the construction for matching solutions of
(k=1)-point boundary value problems with 2-point boundary value problems ia obtain-
ing a solution of (1.1), (1.2). Then in section 3, results completely analogous to
those obtained in section 2 are stated for solutioas of (l.1), (1.3).

2. EXISTENCE OF SOLUTIONS OF (1.1), (1.2).
In this section, for 2 < k { n, let LEEREELY be positive integers such that

k
Y} m=n and m =l. Leta<x

€eos X
1=1 k=

= b < xk £ ¢ and y1j e R,

1 1
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0<1i<m -1, 1 < j<k be given. We match solutions y(x) of (lL.l) satisfying

= =]
y P =y 0t em -, 1 e <t 3T e, (2.1)
with solutions z(x) of (l.1) satisfying
z(i)(xk_l) = y(i)(xk_l), 0<1<n~-3, z(nol)(xk_1)=m, z(xk)- yo’k, (2.2)

where m ¢ R , to obtain a solution of (L.1), (1.2). The use made of a family of
coantrol functions in establishing existence of unique solutions of (k-1)-point and
2-point problems and in establishing desirel monotone properties is seen in the next
four theorenms.
THEOREM 2,1. Assume that there exists a control function Vo(x,yl...,yn) on
(n-1)

[a,b] such that Va (X, ¥(X) yeaesy (x)) > 0, for all solutions y(x) of (l.l1).
Then for each m ¢ R , the boundary value problem for (l.1) satisfying
(1) (n-2)
y (xj) yij’ 0<1< mj -1, 1 {j<k-1l, ¥ (xk_l)sm, (2.3)

has a unique solution.

PROOF. It suffices to show that the boundary value problem for (l.l) satisfy-
i n-2
ing y( )(xj) =0, 0<1¢ mj-l’ 1< <k, y( )(xk-l) = 0, has only the
trivial solution. Assume on the coatrary that this boundary value problem has a

nontrivial solution y(x). It follows that there exist points

(a-2) (n-2) (n-1)
X < 0 < T, < T3 < X, such that y (11) y (13)- y (rz)= 0, and
-2 -2
y(n )(x) or -y(n )(x) has a positive local maximum at x = 1,.
-2
Assume without loss of generality that y(n )(x) has a positive local maximum
a-1
at x = T,. Now from our hypotheses, VO(H’ y(Tl),...,y a (rl))
(o-1) (n-1)
= Vo(r3, y(13),...,y (13)) = 0 and VO(TZ, y(rz),...,y (12)) > 0. However,
-1 -1
since V{ (x,w(x),...,y(n )(x)) >0, Vo(x,y(x),...,y(rl )(x)) is nondecreasing;
consequently, V0(13, y(13),...,y (n-l)(13)) > 0 which is a contradiction. Thus, the

assertion of the theorem is true.

THEOREM 2.2. Assume that for each m ¢ R , there exists a solution yl(x,m) of

boundary value problem (1.1), (2.1). If for each M > 0, there exists a control
-1
function VM(x,yl,...,yn) on [a,b] such that V& (Xy¥(X)yoeey ¥ * )(x)) > 0 for all

2
solutions y(x) of (l.1), then yl(n- )(xk_l,m) is a strictly increasing fuaction

of m.
(n=2) (n=2)
PROOF, Let m1< m, and assume y, (xk-l’mZ) <y

consider the nontrivial solution w(x) = yl(x,ml) - yl(x,mz) of (1.1). It follows

that w(n-z)(xk_l) > 0.

Since w(i)(xj) =0,0<1¢ mj

(xk_l,ml). Then

-1, 1 < j < k-1, it follows by successive
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applications of Rolle's Theorea that there exists T ¢ (xl,xk l) such that

1
a-2 -2 -2
a( )(rl)-o. Yet, from w(n )(rl) = 0, the assumption that w(n )(xk-l) > 0, and

-1
the fact that by construction w(n )(

(n-1)
(€ (rl, xk—l) such that w (12) =0 and

) = m, = m2< 0, we have that there exists
(0-2)
Pl

Xg-1

(x) has a positive local maximum

(n-2) (n-2)
at x = 1,. Now, let T1< a < <8< X, . be such that w (a) = w (B)
-2
=M and w(n )(12) > M. Since there exists a control function VM’ we have
n-1 -1
VM(a,w(a),...,w( )(u))= VM(B,w(B),...,w(n )(B)) = 0 and
-1
VM(TZ’ W(Ty)yeees W(n )(TZ)) > 0. However, since

v (x,w(x),...,w(n-l)(x)) is nondecreasing on [a,b], it follows tnat

VM(B,U(B),..., w(n-l)(s)) > J; agalan a coatradiction.

Thus, w(n-z)(xk

_1) < 0, which in turn implies that yl(n.z)(xK 1

_ ,ml)
< yl(n‘Z)(XK_l’ my). The proof is complete.

REMARK. We remark that, under the hypotheses of Theorem 2.2, it can be argued

by finite induction that yl(n-j)(x

k-l’m)’ 2<] Sin-mk_l, are all strictly
increasing fuanctions of m.
The next two theorems follow from arguments very similar to those used in

Theorems 2.1 and 2.2.

THEOREM 2.3, Let T secesk be given. Assume that there exists a control

k-1
function wo(x,yl,...,yn) on [b,c] such that w6 (x,y(x),...,y(n-l)(x)) > 0 for all

n-3

solutions y(x) of (l.1). Then, for each me R , the boundary value problem for

(1.1) satisfying

Ve 0SS!
(1) (-2 .
y k) = sy zxk_1)= m, y(x ) = Yo,k? (2.4)
ri . mk-li 1 <n3

has a unique solutioan.

THEOREM 2.4. Let yl(x,m) be as in Theorem 2.2 and assume that for each me R ,
there exists a solution yz(x,m) of boundary value problem (1.1), (2.2). If for each
M > 0, there exists a control function WM(x,yl,...yn) on [b,c] such that

W' (x,y(x),...,y(n-l)(x)) > 0 for all solutions y(x) of (l.1), then
M -

(n-2)

Y, (xk-l’ m) 1is a strictly decreasing function of m.

PROOF, Let o < m_, and them set w(x) = yz(x,mz) -9, (x,ml). Then argue as in

2
-2
Theorem 2.2 that w(n )(xk-l) < 0.

We are now prepared to match solutions and obtain a solution of (l.1), (1.2).
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THEOREM 2.5, Assume that, for each m € R , there exists a unique solution of
(l.1), (2.1) on [a,b], and that, for each m e R , there exists a solutioa of
(1.1), (2.2) on [b,c]. Assume, moreover, that the boundary value problem for (l.1)
on [b,c] satisfying

s Px, ) =0, 120, ooy 03, 0e1, ylx) = 0, (2.5)
has only the trivial solution. If for each M > 0, there exist control functions
V (XyY yeeesy ) and W (X,¥ ,e..,y ) on [a,b] and [b,c] respectively, such that
Vé(x,y(x),...,y(n-l)(x)) > 0 and w& (x,y(x),...,y(n.l)(x)) > 0 for all solutions y(x)
of (l.1), then the k-point boundary value problem (1.1), (1.2) has a solution on
(a,c].
PROOF. If yl(x,m) is a solution of the boundary value problem (l.l), (2.1),

(n-2)

then by Theorem 2.2, Y1 (xk-l’ m) is a strictly increasing function of m. We

-2
contend, furthermore, that yl(n )(xk-l’ m) 1is a coatinuous function of m with

range all of R . To see this, it suffices to show the latter; that is,

n=2)
yi (X, _qom) ' me R} = R.

Thus, let r ¢ R . From Theorem 2.1, there is a unique solution u(x) of

(1.1), (2.3) satisfying

(1)
u (xj) yij,OS_ismj 1, 1<j<k~-1,
u(n.z)(xk_l) = r,
Consider now the solution w(x) = u(x) = yl(x,u(n.l)(xk_l)) of equation (l.l). w(x)

satisfies the boundary conditions of type (2.1),

w(i)(xj)-0,0_(_i.Smj-l,ISjSk-l,

(n-1) (n-1) - ,(a=1) -
and w (xk-l) = (xk—l) u (xk-l) 0.
By the hypotheses of the theorem, 4(x) = 0, and hence

(n-1 (n=2) (n-1)

u(x) = yl(x,u )(xk-l))' Consequently, Y1 (xk-l’ u (xk-l))
= u(an)(xk-I) = r, and it follows that r ¢ {yl(n.z)(xk_l, m) ' m e R} .
In summation, yl(n.z)(xk_l,m) is a strictly increasing, continuous function of m

with range all of R .
Similarly, if as in Theorem 2.4, yz(x,m) is a solution of the boundary value

problem (1.1), (2.2), then it will follow that, from the existence of unique

solutions of (1.1), (2.4) and (1.1), (2.5), yz(“°2)

ing, continuous function of m with range all of R . Thus, there is a unique
(n-2)(x (n-2)

(xk_l,m) is a strictly decreas-

(x,_;» my). Then

m, € R , such that vy K=1° mo)- Y,
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X

IA
(7o

yl(x,mo) , a b,

y(x) =
(yz("’"‘o) s, b<x< e,

is a solution of the boundary value problem (1.1), (1.2) on [a,c].

3. EXISCENCE OF SOLUTIONS OF (1.1), (1.3).

In this section, let k, ml,..., mk, a <l xl...< xk—l = b < xkli c and yi.1 e R

be as in the previous section., Let u € {0,1,...,n—2} be given. We state theorems
analogous to those in section 2 in which solutioas y(x) of (l.l) satisfying
i o
y( )(xj) = yij » 0<1i<m -1, 1 <j <k, y(n l)(xk_l) = n, (2.1)
are matched with solutioas v(x) of (l.1) satisfying

e = Wy 0gt <=3, 0D

where m e R , ylelding a solution of (l.1), (1.3). We will omit the proofs of

= m V0 =y G

these theorems. Moreover, Theorems 2.1 and 2.2 are applicable in this section.

THEOREM 3.1. Assume the hypotheses of Theorem 2.3, Then, for each m ¢ R ,
the boundary value problem for (l.1) satisfying

Vg1 * 081 &m gt
y M) T R O AR W)
1':1 , mk_1 £1<n3

has a unique solution

Theorem 3.2, Let yl(x,m) be as in Theorem 2.2 and assume that for each m ¢ R ,

there exists a solution v(x,m) of boundary value problem (l.1), (3.1).If for each
¥ > 0, there exists a control function UM(x,yl,...,yn) on [b,c] such that

Wﬁ (x,y(x),...,y(n-l)(x)) 2> 0 for all solutions y(x) of (l.1), then v(n-z)(xk_z,m)

is a strictly decreasing function of m.

THEOREM 3.3. Assume that, for each m ¢ R , there exists a unique solution of
(1.1), (2.1) on [a,b], and that, for each m ¢ R , there exists a solution of
(1.1), (3.1) on [b,c]. Assume, moreover, that the bouandary value problem for
(1.1) on [b,c] satisfying

y(i)(xk_l) =0, { = 0,,.40~3, n-1, y(u)(xk) =0,

has only the trivial solution. If for each M > 0, there exist control
functions VM(x,yl,...,yn) on [a,b] and wu(x,yl,...,yn) on [b,c], such that

V& (x,y(x),...,y(n-l)(x)) > 0 and UA (x,y(x),...,y(n-l)(x)) > 0 for all solutions

y(x) of (1.1), then the boundary value problem (l.1), (1.3) has a solution on [a,c].
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