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ABSTRACT. A class of generalized functions, called periodic Boehmians, on the unit

circle, is studied. It is shown that the class of Boehmians contain all Beurling

distributions. An example of a hyperfunctlon that Is not a Boehmian is given. Some

growth conditions on the Fourier coefficients of a Boehmlan are given. It is shown

hat the Boehmians, with a given complete metric topological vector space topology, is

not locally bounded.
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I. INTRODUCTION.

The construction of a class B of generalized functions, called Boehmians, was

first introduced by J. Mikusinski and P. Mikuslnskl [I]. This construction, which is

purely algebraic, is similar to that of Mikuslnski operators [2]. In this paper, we

will be concerned with Boehmians on the unit circle, denoted by B(F), first introduced

in [3]. The space of Boehmians is quite general. For example, the Boehmlans on the

real line (unit circle) contain all Schwartz distributions on the real llne (unit

circle). In Section 4 it will be shown that B(F) also contains all Beurling

distributions on the unit circle. Growth conditions on the Fourier coefficients of a

Boehmian were given in Theorems 5.14 and 5.15 of [3]. These results will be extended

in Theorems 4.2 and 4.4. P. Mikusinski [4] also introduced a convergence, called

6-convergence, on , which is similar to Type convergence on Mikuslnski operators

[2]. Type convergence is not topological (-see Section 3), but 6-convergence can be

used to induce a complete invarlant metric topology on . It is known that the dual

of B, on the real line, contains only the trivial continuous linear functional. We

will show, in Theorem 3.5, that the dual of B(F)contains many continuous linear

functlonals, but that B(F) is not locally bounded (Theorem 5.2).

In Section 2, the space B(F) is constructed. Most of the material in Section 3

can be found in [3] and [4], but is presented here for the convenience of the

reader. In this section tw types of convergence on B(F)are discussed, the Fourier

coefficients and Fourier series of a Boehmian are defined, and it is shown (Theorems

3.7 and 3.8) that every Boehmlan is the sum of its Fourier series. In Section 4,
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sufficient conditions on a sequence of complex numbers to be the Fourier coefficients

of a Boelnlan are given (Theorem 4.2). It is also shown that the Fourier coefficients

satisfy a growth condition (Theorem 4.4).

An example .(Example 3) of a hyperfunctlon that is not a Boehmlan is iven. Also,

this example gives rise to a sequence (n) of complex numbers, n" e(Inl) as

Inl , such that (n) is not the Fourier coefficients of a Boehmian, answering a

question posed in [3]. In Section 5, by using the results in the previous section, we

show that 8(r), endowed with a topology, is not a Banach space. The final section is

concerned with some remarks and open problems.

2. NOTATION AND CONSTRUCTION OF 8.

The unit circle will be denoted by r. C(F) (Ll(r)) is the collection of all

continuous (Integrable) complex-valued functions on r. cm(r) (c(r))’" wiI1 be the

collection of sequences of contlnuous (m times continuously dlfferentlable) complex-

valued functions on r.

The convolution of f and g in c(r) is denoted by Juxtaposltlon. Thus,

(fg)(x) I/2 f(x-t)g(t)dt.
-w

If f ,f c(r) for n 1,2,..., llm f f will mean (in) converges uniformly to f
n n

on r.

A sequence of continuous real valued functlons, (j), will be called an

approxlmate identity or a delta sequence if the following conditions are satisfied:

(i) for each J, 1/2 6j(t)dt I.

(ii) for each J and all t, 6j(t) ) 0.

(ill) Given a neighborhood, V, of l, there exists a positive integer N such that

for all j ) N, the support of 6j is contained in V.

The collection of delta sequences will be denoted by A.

DEFINITION 2.1. Let AcCN(y) x A be defined by

A-- {((fj), (j)): for each I and each J fiJ fJi }"

Two elements ((fj), (6j)) and ((gj), (oI)) of A are said to be equivalent, denoted

by ((fj), (j)) ((gj), (aj)), if for all i- and J fiJ gj 6i. A straightforward

calculation shows that ’~’ is an equivalence relation on A. The equivalence classes

will be called periodic Boehmians.

DEFINITION 2.2. The space of periodic Boehmlans, denoted by , is defined as:

8 {[(fj)/(j)] ((fj), (Sj)) A}.

For convenience a typical element of 8 will be written as [fj/j ].

By defining a natural addition, multiplication and scalar multiplication on 8,

i.e. [fj/6j] + [g/aj] [(fj j + gj.)/j ’]’i [fj/j ][gj/ [fj gj / ,] and
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a[fj/j] [afj/j], where a is a complex number, 8becomes aa algebra.

Let (6j) e C(F) 0 h. Then D’(F) (Schwartz distributions on the unit circle) can

be viewed as a subset of B by identifying u with [u*j/6j], where u*6j denotes the

convolution of u and 6. as d[stributions (see [5]).

3. CONVERGENCE AND FOURIER SERIES.

Let U be a class of sequences on a space X (with or without a topology). We

U
say Xn If the sequence (X,Xl,X2,...)is in U. U is called topological if there

U +z A rgence usedexists a topology T for X such that x x if and only if x x. conve

in Mikuslnskl operational calculus, called Type convergence, is not topological [6].

In a more general coustructlon of Boehmlans, P. Mikuslnskl [4 defines a

convergence, called A-convergence, and shows that A-convergence is topological. In

fact, Mikusinski shows that B is an F-space (a complete topological vector space in

which the topology is induced by an invariant metric).

Before we define A-convergence, we will define a related convergence,

called 6-convergence.

Let a a e B for n 1,2,..., we say that (a) is 6-convergent to a if there
n n

exists a delta sequence (j)such that for each n and J, a6j, anj
C(), and for

each j llmnanj a6j. This will be denoted by 6-1im an a.

The proof of the next lemma can be found in [4].

LEdA 3.1. Let a E fn E c(r) for n=l,2, If there exists () E A such
n n

that for each n and J, __anj E c(r) and for each J, limnan6
__

fj, then

6-11m a =if /6 ].
n j j

DEFINITION 3.2. A sequence (a
n

of Boehmlans is said to be A-convergent to a,

denoted by A-llm a =a, if there exists a delta sequence () such that for each n,n n

-a) e c(r) and lira (an-a) 6n" 0.

..iARK. A sequence of Boehmians (a) is A-convergent to a if and only if each
n

subsequence of (a
n

contains a subsequence 6-convergent to a, [4].

The Fourier coefficients of an LI(F) function are defined in the usual way. That

Lif f e (r) define

-iktdt, for k O, I,2,Ck(f 1/2 f f(t)e

From the definition of a delta sequence it follows that if (6) A, then for
n

each k, lim
n- ._C(6n I. It is also easy to show that for a [fj/6j], if for some

and some k C
k (j 0 then C

k (fj O. These observationspositive integer Jo o
o o o o

together with "the fact that if a [fj/6j], then for each n and m, fn 6m=fm6n’ make the

follot.ng definition possible.

DEFINITION 3.3. Let a =[fj/6j] e For k 0, +/-I, 2,..., define

Ck(a Ck(fj)/Ck(j) where for fixed k, is the smallest index such

that %(6j) O.



688 D. NEMZER

The proofs of Theorems 3.4 and 3.7 can be found in [3].

THEOREM 3.4. Let a, a 8, for n=I,2,..’.. Suppose 6-11m a =a, then for each k,
n n

limn Ck(a n Ck(a).
In this sequel, unless otherwise stated, the topology for 8 will be the one

induced by A-convergence. J. Burzyk and T.K. Boehme, separately, have shown that

Boehmlans on the real llne have no continuous linear functlonals other than the

trivial one. As the next theorem will show this is not the case for periodic

Boehmians. In fact, there are enough continuous linear functlonals to separate

points.

THEOREM 3.5. Let a a 8, for n 1,2,... If A-lira a =a, then for each
n n

k, lira
n Ck(a )(n_=Ck a

PROOF. Follows from the remark following Definition 3.2 and Theorem 3.4.

DEFINITION 3.6. Let a e 8, then the Fourier series of a is [. Ck(a)e Ikt.
n

THEOREM 3.7. For each a E 8, a 6-11mn Ck(a)eikt.
k---n
n

THEOREM 3.8. For each a e 8, a A-llmn Ck(a)eikt.

PROOF. Follows from the remark following Definition 3.2 and Theorem 3.7.

4. GROWTH CONDITIONS ON THE FOURIER COEFFICIENTS.

In the construction of Beurling distributions, see Example 2, a real-valued even

function defined on the integers Z satisfying the following conditions is required.

CA) 0 --m(0) < mCn+m) (n) + re(m)

(B) . (n)/n 2 < .
n--

for all n,m E Z.

Functions that satisfy conditions (A) and (B) will play an important role in this
section.

The proof of the next technical lemma is similar to the proof of Theorem 1.2.7 in

[7].

LEMMA 4.1. Suppose m is a real-valued even function satisfying conditions (A) and
(B). Let ml(n) max {m(m):Iml Inl}. Then ml also satisfies conditions (A) and (B).

PROOF. It is routine to show that I satisfies condition (A). To show
that ml satisfies condition (B), partition the set of nonnegative integers N into the
sets F,G, and H as follows: F {n E N: (n) ml(n)}’
G {n E N: 0(n-l)=ml(n-l), re(n) < ml(n), (n+l)=ml(n+l)} and H N\(F U G). First,

consider the set H. H UV where for m=l,2,.., there exist i ,J E N withm m m

i < J < i such that V {nN: (n)<(n) for n=i ,im+l ,jm m m+l m m m

(i-I)=1(i ),(Jm+1) l(Jm+1)} 1(Jm mm m +I)}. Consider a typlcal V for

which im ) 2. (If (n) 1(n) for all n or if Jm the lemma is trivlal). Let

--min {i -I, Jm-im}. Let E {neN: i n i + and re(n) < m(i -I)/3),m m m m

E’={neN: im(n(im+ and m(n))m(im-l)/3}, and E ={neN: n=im-l+Xl-X2 ) -m’ Xl’X2eEl"
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Let I’I cardinality of ". It then follows that E*c E’ and

IE*I + )IEI, hence IE’I ) /2. By using estimates and considering

cases (=im-I or =jm-lm), we obtain

Jm Jm
l(n)/n

2
108 (n)/n 2.

n=i n=i
m m

Thus, [ (n)/n
2

4 108 . (n)/n2. (4.1)
nH nell

2
Now, for each neG .(n)/n (n-l)/-(n-I) 2.

Hence, . (n)/n
2

( . (n-l)/(n-l) 2. (4.2)
neG neG

Since for each neF (n) 01(n). (n)/n2= . (n)/n2 (4.3)
neF neF

By combining (4.1), (4.2), and (4.3), we see that I satisfies condition (B).

Thus, the theorem is proved.

Before giving sufficient conditions for a sequence of complex numbers to be the

Fourier coefficients of a Boehmlan (Theorem 4.2), we need a result of BJorck [7].
Suppose is a real-valued continuous function on R satisfying 0=(0) 4 u(x+y)

< (x) + (y) for all x,y R, (t)/t2< , and (t) n(l+It I)

Then given any compact set K of R and any neighborhood V of K, there exists a

continuous function such that 0 I, the support of is contained in V,

and --1 on K. Mreover, (t) O(e -(t)) as Itl , where denotes the Fourier

transform of

By using the above, we may construct an approximate identity (j) such that for

each J C () 0(e -(n)

THEOREM 4.2. Let be a real-valued even function satisfying conditions (A) and

(B). Suppose (n) is a sequence of complex numbers such that n-0(e(n)) as Inl / -,
then there exists a Boehmlan a e 8such that C (a) for all n.

n n
PROOF. Let 0*(n) l(n) + Inl, where 01 is as in Lemma 4.1. Then * satisfies

conditions (A) and (B). Let *(t) be the piecewlse linear extension of * to R.

Since *(t) is increasing on [0,=) and 7. 0(n)/n 2 < =, [ a(t)/t2dt < =. Also,
n=l

(t) n(l + Itl). So there exists (j) e A such that for each

C (6) 0(e-*(n)
n j

m
as n +-. Let t) . ke for u0,1,2 Then, for

k= -m
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each J, the sequence (Pmj)converges uniformly. Hence for some a e 8, 6-1ira Pm=a.
Now, for m) In C (pm)=n. Therefore, by Theorem 3.4 for each n C (a) n This

n n
establishes the theorem.

The following lemma is a special case of Theorem XV from [8].

LEMMA 4.. Let (t) be an increasing function for t)0, such that

(t)/t2dt . Suppose f e LI(F) such that C (f) O(e -(n)
-n )as n/. If f

vanishes almost everywhere on any interval, then f _= 0.

The next theorem shows that the Fourier coefficients of a Boehmlan cannot grow

too fast.

THEOREM 4.4. Let : Z R be an increasing function for n=0,1,2,.., and

[ (n)/n 2 . Suppose (n) is a sequence of complex numbers such that there eist
n=l

positive A, M, and such that lnl ) Ae
e(n)

for all n ) M. Then (n) is not the

FQurler coefficients of a oehmlan.
n

IktPROOF. ppose n ) A e
n)

for all n ) M. t Pn(t) I ke
k=-n

Suppose (.) e A. Extend (n) linearly to a funetlon (t) on [0,). Now,

since (t) is increasing and [ (n)/n2 =-, (t)/t2dt . en by the previous
n=l

lamina, for each j there exists (nk) such that Cnk(j) , e -’nk us, for each

n
J’ PnJ (t) [ k Ck(j )elkt does not converge and the result follows by eorem
3.7.

EXALES. I) If (n) n(l +n), then D’(r) (periodic hwartz distributions

[5]) is isomorphic to {a 8: there exist > 0 such that C (a) O(e sn)) as
n

2) t m be an een real-alued unettn n the tnteger Z hich sattsftes

() 0- (0) (n + ) (n) + da) or ali n, e Z,

(B) [ (n)/n 2 < -.
n

(C) There exist real a and positive b such that (n) )a + b n(l+In I) for

ali neZ.

(D) is concave down on n-0,1,2,....

The set of Beurllng distributions on the unit circle P’ is dual space of P (a test

function space with a locally convex topology). P’ is isomorphic to the collection

of all sequences of complex numbers of -slow growth [9] (a sequence (n) of complex

numbers is said to be of u-slow growth if there exist constants M and a such that for

all neZ, lnl Mea((n))). So, by Theorem 4.2, 8 contains all periodic Beurling

distributions.
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By taking (n) n (re(n) en, e > 0), where 0 a < I, in Theorem 4.2 (Theorem

4.4), we obtain Theorem 5.14 (Theorem 5.15) in [3]. The next example shows that

Theorem 4.2 (Theorem 4.4) is more general than Theorem 5.14 (Theorem 5.15).
cr+13) For let (t) t/(nt) a

for t e and for 0 t < e is the

a+l +I
linear function whose graph passes through the origin and (e

Define for t < 0 by (-) (). I is not diicul o sho ha

satisfies condition (A), since, if Is any concave do increasing function for

t 0, such that (0) 0 and (-t) (t), then satisfies condition (A). Now,

let m (n) denote the restriction of m (t) to the integers. Thus, by Theorem 4.2,

(exp( (n))) is the Fourier coefficients of a Boehmian when > I; but (exp(l(n))),
by Theorem 4.4, is not the Fourier coefficients of a Boehmtan.

The above answers one (and partially another) question posed in [3]. Not every

(n)sequence n=e as [n oo, is the sequence of Fourier coefficients for a

Boehmian. Secondly, "How does 8 compare with the set of hyperfunctlons?" Since

llmsUPn lexp(l(n))l I/n I, (exp(l(n))) is the Fourier coefficients of a

hyperfunction [I0], but is not the Fourier coefficients of a Boehmian.

5. TOPOLOGY OF 8.

A topological vector space X is called a topological algebra if it Is an algebra

over the real or complex nabers and multiplication is continuous in each argument

separately. It is not difficult to show that 8 endowed with A-convergence is a

topological algebra.

DEFINITION 5.1. Let X be an F-algebra (F-space which is an algebra over the real

or complex numbers) with metric d. Then X is called a p-normed algebra if there is a

function II’II: X R such that:

(ill) there exists 0 < p such that for all scalars a and each xX

Zelazko [II] has proved that a complete metric topological algebra is locally

bounded if and only if it is a p-normed algebra.

THEOREM 5.2. 8 is not locally bounded.

PROOF. Suppose 8 is locally bounded. Since 8 is a complete topological algebra,

there exists an equivalent p-norm II’II on 8. Now for n=O,l,2

n ()
let an== aos where s [j /j for =0, 1,2 ,n,

0

(dj) cN(F)qA’o and a I/(i[) for =0, I,2,...,n. Given e > 0 there exists a

positive integer M such that for n ) m ) M,

n n

llan-%II=II Y. z l / ,l II II
=m+ =m+

<

That is, (a) is a Cauchy sequence and since 8 is complete, there exists an a E 8
n

n
such that a A-lira [. as.n =0

So, by Theorem 3.5, for each k
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Q_(a) . --(k)l! e which is impossible by Theorem 4.4. Hence B must not be
4=0

locally bounded.

COROLLARY 5.3. B is not normable.

6. SOME CONCLUDING REMARKS AND QUESTIONS.

(I) It can be shown that if the squence (n) is the Fourier coefficients of a

Boehmian a that satisfies the hypothesis of Theorem 4.2 (for some function ), then

limsuPnlnll/n and hence a is a hyperfunction [I0]. Example 3 presents a

hyperfunctlon that is not a Boehmian. Is properly contained in the set of

hyperfu on

(2) Theorem 4.2 gives sufficient conditions for a sequence to be the Fourier

coefficients of a Boehmian. Are these conditions also necessary?

(3) with A-convergence is an F-space [4]. Theorem 3.5 shows that has enough

continuous linear functionals to separate points, but Corollary 5.3 shows that 8 is

not a Banach space. Is "B with A-convergence a Frechet space?

(4) What about boundary-value theory? That is, what type of harmonic (analytic)

function in the unit disk has a Boehmian for its boundary value? Much mathematical

research has been centered around boundary-value problems of harmonic (analytlc)

functions in the unit disk; see for example [9] and [I0].
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