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ABSTRACT. We consider a boundary value problem consisting of the one-dimensional
parabolic equation gu, = (hux)x + q, where g, h and q are functions of x, subject to
some general boundary conditions. By developing a maximum principle for the boundary
value problem, rather than the equation, we prove the uniqueness of a nonnegative

solution that depends continuously on boundary values.
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1. INTRODUCTION.

If a is a positive constant, D = {(x,t) e]Rz: 0<x<a, t> 0} and
D= {(x,t) ¢ ]R2: 0<x<a, t >0}, we shall be concerned with  continuous

nonnegative solutions u:D + IR of the parabolic boundary value problem

gu, = (hux)x +q in D (1.1)
alu(O,t) - blux(O,t) =c, t>0 (1.2)
azu(a,t) + bzux(a,t) =c, t >0 (1.3)
u(x,0) = f(x) 0<x<a (1.4)

where we assume that

(1) g, h and q are nonnegative continuous functions on [0,a], g and h never vanish
and h has a continuous derivative,

(i1) al, 32’ bl’ b2, cl and c2 are nonnegative constants,

(1ii) a +bl>0 and a

1 +l:.2 > 0, so that none of the boundary conditions is

2
missing,

(iv) aa, > 0, and

(v) f is a nonnegative continuous function with a piecewise continuous derivative

and satisfies (l1.2) and (l.3).
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A continuous solution on D must be bounded below, and we are assuming without
loss of generality that this bound is zero. This is in agreement with the constraints

on the constants < and Cye

The question of existence of solutions is easily answered by finding first the
steady state solution and then using separation of variables and the Sturm-Liouville
theory to prove the existence of a transient solution. It can be shown that a
nonnegative steady state solution always exists under the stated conditions while, if
condition (iv) fails to hold, it may exist but with probability zero. For proof see
[1j. When a a2 >0 it may still not exist if either bl < 0 or b2 < 0, as in the

1
problem

u(0,t) + ux(O,t) =1
2u(l,t) =1

which admits no solution independent of time. In fact, under these conditions it

cannot even be guaranteed that the solution will be nonnegative, as in the problem

u(0,t) - ux(O,t) =3
u(l,6) - u (1,t) =1
whose only solution independent of time is U(x) =1 - 2x.

Uniqueness of solutions is sometimes obtained from a strong maximum principle of
A. Friedman [2], for a general type of parabolic equation. 1In this paper we shall be
able to give a much shorter proof by developing, instead, a type of maximum principle
for the boundary value problem, rather than for the equation alone. This will provide
the added benefits of enabling us to prove that the unique solution is nonnegative and
depends continuously on the boundary and initial values. In the simpler case in which
(1.1) becomes the heat equation, all of these facts are easily concluded from the
usual maximum principle of E.E. Levi, but such a theorem is not valid when q # O.
However, the following starting statement about the minimum of a solution will be

sufficient for our purposes.

2. MAIN RESULTS.
THEOREM 1. Let T be an arbitrary positive number and define the sets
D, = {(x,t) € D: t < T}

o
]

{(x,t) e D: t < T}

and

{(x,£) € Dy (x,t) £ Dl
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If u: BT + IR is a continuous function that satisfies (l.l) in DT' then u attains its

minimum value on Yp-
The proof is a trivial modification of that of Levi's principle.

THEOREM 2. Let QT’

D,

oo Yt and u be as in Theorem 1 and define the sets

Yo = {(x,t) € Yoi X 0, t >0}

and

Y, < {(x,t) € Ypix=a, tD 0}.

If u has a negative minimum on 5T and if

1. u satisfies (1.2), then it attains its minimum on Yr T

Y ¢
0

2. u satisfies (1.3), then it attains mimimum on Yp T Y,

PROOF. By Theorem 1, u attains its minimum value m < 0 on Yre

1. Assume that, contrary to the desired conclusion, u(O,to) =m for

some CO > 0 while u » M > m on Yo T Yo' Then ux(O,to) ?» 0 and

alu(O,to) - blux(O,to) < 0, which is impossible if Cl > 0. Thus, c1 = 0 and then

bl > 0, or else alu(O,tO) =am < 0, contradicting the value of -

If we now define

H(x) =

O %
|-

and a new function v: D

DT +IR by

vix,t) = u(x,t) - %ﬁ%;% H(x)

then v is continuous and satisifies (l.1) because
M-ml
8y (hvx)x guy (hux)x (h 2H(a) h)x
=gu, - (hux)x =q
According to Theorem 1, v also attains its minimum on Yoo In fact, this minimum is
at (O,to) because if (x,t) € Yr T Yo then

v(x,t) » u(x,t) - M ; B5M- M ; m _M ; L

while v = u on Yo

Now, since ¢, = 0 and bl > 0, differentiation of v with respect to x gives

M-m
vx(o’to) = “x(o’to) ~ 2H(a)h(0)

1

a1 M-m
%, u0,t4) - ZuGayneoy < °

Then v is decreasing in the x direction at (0,:0). contradicting the fact that it has

its minimum at this point. This contradiction shows that u must attain its minimum

on Yy < Yy-



738 E. A. GONZALEZ-VELASCO

2. The proof is analogous to the one above, but based on the choice

M-m
2H(a)

v(x,t) = u(x,t) - [H(a) - H(x)]
Q.E.D.

These theorems have two corollaries that are applicable to solutions of

gu, = (hux)x in D (2.1)
alu(O,t) - bzux(O,t) =0 t >0 (2.2)
azu(a,t) + bzux(a,t) =0 t >0 (2.3)

and we shall use them to complete the discussion of our boundary value problem.

COROLLARY 1. A continuous function u: BT + IR that satisfies (2.1) in DT attains

its maximum value on Ype If this maximum value is positive and if

1. u satisfies (2.2), then it attains its maximum on Yr T Y
2. u satisfies (2.3), then it attains its maximum on Yp T Yur
PROOF . If u satisfies any of the last three equations, so does =-u, and thus -u

satisfies the hypotheses of Theorems 1 and 2 withq =0, and ¢, = cy = 0.

1
Accordingly, the statements made by these theorems about the minimum of -u translate
into the statements made here about the maximum of u, Q.E.D.

COROLLARY 2. Let u: D +IR be a continuous function that satisifes (2.1) -

(2.3). 1If MO and ny denote its maximum and minimum values on Yp {W)U Ya}, then
min {0, mb} < u(x,t) < max {0, Mo}

for all (x,t) € D.

PROOF. Let T > O be arbitrary. By Theorem 1, the restriction of u to BT attains

its minimum value m on Yo+ Either m » 0, and then u(x,t) » 0, or m < O. In this
second case, Theorem 2 implies that u attains its minimum on YT - {W)U ya} and thus

0 and u(x,t) > mo. Since T is arbitrary, this proves the inequality on the

left. Similarly, by Corollary 1, the restriction of u to BT attains its maximum value

M on YT Either M < 0, and then u(x,t) < 0, or M > 0. In this second case, and again

by Corollary 1, u attains its maximum on Yo {16\115}, and thus M = M_ and

0
u(x,t) <M Since T is arbitrary, this proves the inequality on the right, Q.E.D.

0
We now return to the original boundary value problem.

THEOREM 3. The boundary value problem (l.1) - (1.4) has a unique continuous
solution u: D » IR that depends continuously on initial values, and this solution is
nonnegtive.

PROOF. If v, and u, are solutions of (l.1) - (l.4) corresponding to initial

functions f and g, then u, - u, satisfies (2.1) - (2.2) and the new initial condition

1 2
(u1 - uz)(x,O) = £(x) - g(x).
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If MO and m denote the maximum and minimum values of f - g, then Corollary 2 implies

that

min {0, mo} < (u1 - u2)(x,t:) < max {0, MO}
for all (x,t) € D. Therefore, if f is close to g on [0,a], Mo and m, are close to
zero and so is u - u,y. This proves the continuity of solutions with respect to

1
initial conditions and, taking f = g, proves uniqueness.

Finally, if u has negative values then, according to Theorem 2, it attains its
negative minimum on Yp -~ {YOU Ya}, where it equals f. But this is impossible because
f > 0. Q.E.D.

To prove the continuity of the solution with respect to both boundary and initial

conditions, notice that the steady state solution U as found in [1],

X a
U(x) = - I%'P B(—Q)-%ﬁ [(alc2 - a,c; +aa, f% ) h(a) + alsz(a)]
0 0
a
+ 5 (b c,h(a) + bye h(0) + b ba(a) + a,c h(O)h(a)H(a) + a.b h(a) 6{%)
where x
QAUx) = [q
and 0

A= [alh(O)H(a) + bl]azh(a) + albzh(O)

depend continuously on the values of the constants. Then, if u is the unique solution
of (l.1) - (l.4) and we define v = u - U, this function satisfies (2.1) - (2.3). As
above, v depends continuously on f - U, which, in turn, depends continuously on f and
the constants. That is u is stable with respect to initial and boundary values. We
can sum up our results as follows

THEOREM 4. The boundary value problem (l.1) - (l.4) is well posed in the sense of
Hadamard.
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