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ABSTRACT. We consider a boundary value problem consisting of the one-dimensional

parabolic equation gu
t (hUx) x + q, where g, h and q are functions of x, subject to

some general boundary conditions. By developing a maximum principle for the boundary

value problem, rather than the equation, we prove the uniqueness of a nonnegative

solution that depends continuously on boundary values.
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I. INTRODUCTION.

If a is a positive constant, D {(x,t) ]R2:0 < x < a, t > 0} and

11t2D {(x,t) 0 x a, t 0}, we shall be concerned with continuous

nonnegative solutions u:D IR of the parabolic boundary value problem

+qgut (hUx) x

alU(0,t blUx(O,t c

a2u(a,t) + b2ux(a,t) c
2

u(x,O) f(x)

in D (1.1)

t 0 (1.2)

t ) 0 (1.3)

0 ( x ( a (1.4)

where we assume that

(i) g, h and q are nonnegatlve continuous functions on [O,a], g and h never vanish

and h has a continuous derivative,

(ii) al, a2, bl, b2, c and c
2

are nonnegative constants,

(iii) a + b > 0 and a
2

+ b
2 > 0, so that none of the boundary conditions is

missing,

(iv) ala 2 > O, and

(v) f is a nonnegative continuous function with a piecewise continuous derivative

and satisfies (1.2) and (1.3).



736 E. A. GONZALEZ-VELASCO

A continuous solution on D must be bounded below, and we are assuming without

loss of generality that this bound is zero. This is in agreement with the constraints

on the constants c and c 2.

The question of existence of solutions is easily answered by finding first the

steady state solution and then using separation of variables and the Sturm-Liouville

theory to prove the existence of a transient solution. It can be shown that a

nonnegative steady state solution always exists under the stated conditions while, if

condition (iv) fails to hold, it may exist but with probability zero. For proof see

[I]. When ala2 > 0 it may still not exist if either b < 0 or b
2 < 0, as in the

problem

U U
t xx

u(0,t) + u (0,t)
X

2u(l ,t)

which admits no solution independent of time. In fact, under these conditions it

cannot even be guaranteed that the solution will be nonnegative, as in the problem

U U
t xx

u(0,t) u (0,t) 3
X

u(l,t) Ux(l,t)
whose only solution independent of time is U(x) 2x.

Uniqueness of solutions is sometimes obtained from a strong maximum principle of

A. Friedman [2], for a general type of parabolic equation. In this paper we shall be

able to give a much shorter proof by developing, instead, a type of maximum principle

for the boundary value problem, rather than for the equation alone. This will provide

the added benefits of enabling us to prove that the unique solution is nonnegative and

depends continuously on the boundary and initial values. In the simpler case in which

(I.I) becomes the heat equation, all of these facts are easily concluded from the

usual maximum principle of E.E. Levi, but such a theorem is not valid when q 0.

However, the following starting statement about the minimum of a solution will be

sufficient for our purposes.

2. MAIN RESULTS.

THEOREM I. Let T be an arbitrary positive number and define the sets

D
T {(x,t) e D: t 4 T}

D
T {(x,t) e D: t 4 T}

and

"(T {(x,t) e DT: (x,t) DT}.
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If u: T IR is a continuous function that satisfies (l.l) in DT, then u attains its

minimum value on YT"
The proof is a trivial modif[cation of that of Levi’s principle.

THEOREM 2. Let DT, T’ YT and u be as in Theorem and define the sets

Y0 {(x,t) e YT: x 0, t > 0}

and

Ya {(x,t) e T: x a, > 0}.

If u has a negative minimum on DT
and if

I. u satisfies (1.2), then it attains its minimum on YT Y0"
2. u satisfies (1.3), then it attains mlmimum on YT Ya"
PROOF. By Theorem I, u attains its minimum value m < 0 on T"
I. Assume that, contrary to the desired conclusion, u(0,t0) m for

some to > 0 while u M > m on YT Y0" Then u (0,t0) 0 and
x

alu(0,t 0) blux(0,t0) 0, which is impossible if c > 0. Thus, c 0 and then

b > 0, or else alu(0,t0) alto < 0, contradicting the value of c I.
If we now define

x
(x) f

0

and a new function v: D
T
/R by

M mv(x,t) u(x,t) 2H(a) H(x)

then v is continuous and satlsifies (I.I) because

gvt (hvx)x gut (hUx)x lh M-m )xl
gu

t
(hu) q

According to Theorem I, v also attains its minimum on YT" In fact, this minimum is

at (O,t0) because if (x,t) YT Y0 then

M-m M-m M+mv(x,t) ) u(x,t) 2
) M

2 2 > m

while v -= u on Y0"
Now, since c 0 and b > 0, differentiation of v with respect to x gives

M m
v (0 t o u (0,t 0)x x 2H(a)h(0)

a
M-m

b- u(O’t0) 2H(a)h(0) < 0

Then v is decreasing in the x direction at (0,t0), contradicting the fact that it has

its minimum at this point. This contradiction shows that u nst attain its minimum

on T 0"
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2. The proof is analogous to the one above, but based on the choice

v(x t) u(x t) M- m
2H(a) iN(a) H(x)]

Q.E.D.

These theorems have two corollaries that are applicable to solutions of

gu
t

(hu) in D (2.1)
X X

alu(0,t) b2u (0 t) 0 t ) 0 (2.2)
X

a2u(a,t) + b2ux(a,t) 0 t ) 0 (2.3)

and we shall use them to complete the discussion of our boundary value problem.

COROLLARY I. A continuous function u: T ]R that satisfies (2.1) in D
T

attains

its maximum value on YT" If this maximum value is positive and if

|. u satisfies (2.2), then it attains its maximum on YT 0"
2. u satisfies (2.3), then it attains its maximum on YT Ya"
PROOF. If u satisfies any of the last three equations, so does -u, and thus -u

satisfies the hypotheses of Theorems and 2 with q =_ 0, and c c
2

O.

Accordingly, the statements made by these theorems about the minimum of -u translate

into the statements made here about the maximum of u, Q.E.D.

COROLLARY 2. Let u: D /IR be a continuous function that satlsifes (2.1)

(2.3). If M
0

and m
0

denote its maximum and minimum values on YT {YOU Ya }’ then

mln {0, m0} 4 u(x,t) max {0, MO}
for all (x,t) e 5.

PROOF. Let T > 0 be arbitrary. By Theorem I, the restriction of u to T attains

its minimum value m on YT" Either m 0, and then u(x,t) O, or m < 0. In this

second case, Theorem 2 implies that u attains its minimum on YT {YoU Ya and thus

m m
0

and u(x,t) m0. Since T is arbltrary, this proves the inequality on the

left. Similarly, by Corollary I, the restriction of u to DT attains its maximum value

M on YT. Either M < 0, and then u(x,t) 0, or M > 0. In this second case, and again

by Corollary I, u attains its maximum on YT {Y0 U Ya }, and thus M M
0
and

u(x,t) < MO. Since T is arbitrary, this proves the inequality on the right, Q.E.D.

We now return to the original boundary value problem.

THEOREM 3. The boundary value problem (I.I) (1.4) has a unique continuous

solution u: D ]R that depends continuously on initial values, and this solution is

nonnegt ive.

PROOF. If u and u
2

are solutions of (I.I) (1.4) corresponding to initial

functions f and g, then u -u
2

satisfies (2.1) (2.2) and the new initial condition

(u -u2)(x,O) f(x) g(x).
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If M
0 and m

0
denote the maximum and minimum values of f g, then Corollary 2 implies

that

mln {0, m0} (u -u2)(x,t) max {0, M0}
for all (x,t) . Therefore, if is close to g on [O,a], M

0
and m

0
are close to

zero and so is u u 2. This proves the continuity of solutions with respect to

initial conditions and, taking f g, proves uniqueness.

Finally, if u has negative values then, according to Theorem 2, it attains its

negative minimum on YT {YOU ya }, where it equals f. But this is impossible because

f 0. Q.E.D.

To prove the continuity of the solution with respect to both boundary and initial

conditions, notice that the steady state solutlon U as found in [I],

where

and

U(x) + [(alc a2c + a a
2 h(a) + alb2Q(a)]

0
A 2

+ (blC2h(a) + b2Clh(0) + blb2Q(a) + a2Clh(0)h(a)H(a) + a2blh(a)
O
f

x
Q(x) f q

0

A [a h(0)H(a) + b ]a2h(a) + a b2h(0)

depend continuously on the values of the constants. Then, if u is the unique solution

of (I.I) (1.4) and we define v u- U, ths function satisfies (2.1) (2.3). As

above, v depends continuously on f- U, which, in turn, depends continuously on f and

the constants. That is u is stable with respect to initial and boundary values. We

can s up our results as follows

THEOREM 4. The boundary value problem (I.I) (1.4) is well posed in the sense of

Had arear d.
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