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ABSTRACT. The paper deals with the problem of translativity of Rogosinski summability
methods (Rh,r) of orders h, r; 0 < h-r < 1. It has been shown by the author [1] that
when r = 0, h ¢ [1/2 ,11, (Rh,O) is translative, and when r = 0, h ¢ (0, 1/2(5’—1)),
(Rh,o) is neither translative to the left nor to the right. The problem 1is left
unsettled for the rest of the interval (O, l/2) with the conjecture that if

h € (0, 1/2), (Rh,O) is neither translative to the right nor to the left. 1In this
paper we prove that when h-r ¢ [ 1 ,1], (Rh,r) is translative, and when

h-r ¢ (0, 1/2), (Rh,r) is neither translative to the right nor to the left. These
results establish both, the open problem and its conjecture which have been given by

the author [1].
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1. INTRODUCTION.

The series a, + a, +... of real or complex terms with its partial sums

1

Sn = ag + al+...+ a is said to be summable by the Rogosinski method

(Rh,r);o {hor <1, if t »t, as n»w, where

n
t, = ) cos(k+r) @ a, (1.1)
k=0
and
L
en -2—(1{;‘3, n 0,1,2,... (1.2)
In the special case in which r = 0, this method will reduce to the Rogosinski-

Bernstein method (Rh) which has been the subject of many papers (see Al-Madi [1],
Agnew [2] and Petersen [3]). The series 1is evaluable to ty by the (C,1) method,

if Mn +tM as n + o, where

SO+SI+"'+Sn
My, = T . (1.3)
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For a summability method A € Tl (translative to the left) if, whenever Z a, is
summable A to s, then so is z a _y- A € 'I‘r if the converse holds. A € T if, and only

if AeTNT..
1 r

Much work has already been done on translative summability methods (see Al-Madi

[1,4,5], Chowdhury [6], and Kuttner [7-10].

The author [1] proved that if h e [Y;,11, (R, ) €T, and if 0 <h <y (B-1),
’
then (Rh 0) £ T1U Tr' The author left the problem unsettled for the rest of the
interval (O,IQ ). He conjectured that when h € (O, Uﬁ), then (Rh 0) £ T1 UTr'

2. OBJECT OF THE PAPER.

The object of this paper is to  prove that when h-r € [1& , 11,
- 1
then (Rh,r) ¢ T, and when h-r £ (0, ‘o), then (Rh,r) £ T, UT,. The second result

establishes both the open problem and its conjecture which have been given in [1].

3. MAIN RESULTS.

In this section we will prove the following three main results:

THEOREM 3.1. If h-r € (15, 1], (R, ) eT.
THEOREM 3.2. 1f h-r =1, then (R, ) €T.
’
THEOREM 3.3. 1If h-r e (0, 1), then (R, ) £ T,UT .
,T 1" 'r
The following result will be used in the proof of Theorems 3.1 and 3.2.

THEOREM 3.4. (Agnew [11]) If

n
Ho= kzo dn,ksk, (3.1)
is regular and
n-1
}lili _nf [|dn,n| - k=20 |dn’k|] >0, (3.2)

then the transformation given by (3.1) is equivalent to convergence.
PROOF OF THEOREM 3.1. We will show that when h-r ¢ (Y, 11, then (Rh r) and
(C,1) are equivalent, and the result follows from the fact that (C,1) € T. Observe

that since

a = (DM - 20M ;4 (=DM, 0= 0,1,2,... M_ =M =0, (3.3)
it follows form (1.1) that
o
t, = 2 An’kMk, (3.4)

k=0
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where
A = (n+l)sin(h-r)o _, (3.5)
n,n n
An,n-1= n[2sin 1 Q cos Ué(Zh—2r+l)0n - sin(h—r)Ch], (3.6)
L2
= - s - .7
An,k 4(k+1)sin” Yo Oncos(k+r+l)en 0 <k <n-2, (3.7)
and
A =0 k > n. (3.8)
n,k

Using the same technique as Agnew [2; p. 544-545], we see that if h-r is in (lp 11,
(Rh,r) is equivalent to (C,1). This completes the proof.

PROOF OF THEOREM 3.2. To prove the result, it 1is enough to consider some
translative summability method, and to show that this method is equivalent
to (Rh,r) in the case in which h~r = Uﬁ. For this, we consider the sequence-to-

sequence method Q given by the transformation

__n_ n+l
Qn " 2n+l “n-1 M 2n+l Mn’ (3.9

where Mn is given by (1.3). Using (1.3) and (3.9) to obtain 65 in terms of Qn’ the

result is

= _ 2nt+l
Q1™ Zn+3 & (3.10

This implies that Q € T.
Next, put h-r =¥Q , and write An " given in (3.7) in the form

A = -2(k+l)sec }p sin’ 1 © [cos(2k+2r+1) 15 0 + cos(2k+2r+3) 1 0 1, (3.11)
n,k n n n n

and use (3.9) to obtain the transformation (Rh r)(Q)_l,
’

n
t, = 1 B,k % (3.12)
k=0
where
Bn,n = (2n+1)cos (n+r)en, (3.13)
8 . = -2(2k+1)sec 1 0 sin’ Uy @ cos(2k+2r+1) e 0 <k <n-l. (3.14)
n,k n n n

It is easily seen that the transformation given by (3.12) is regular. Hence applying

Theorem 3.4 to the matrix given in (3.12), one can easily show that the transformation

given by (3.12) is equivalent to convergence, and (Rh r) is equivalent to Q. This
’

completes the proof.
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PROOF OF THEOREM 3.3. We will show first that if h-r e (O, Ué), then (Rh r) £ Tr'
’

For this we consider the sequence {Vn} given by

v

+S 4 ...+ 3.15
n SO Sl Sn' ( )

where

= - +
% Vn 2vn—l Vn-2'

(V_ =0 for positive integer k). (3.16)

-k

Using (3.16), it follows from (l.1) that

n
= .17
RZO CicVics (3.17)
where
C = sin(h+r)o , (3.18)
n,n n
Cn,n-l = sin(1+h+t)9n— 251n(h+r)0n, (3.19)
and
= —4ginll -
Cn,k = -4sin” Oncos(k+r+1)0n, (0 <k <n-2). (3.20)

Let {tn}, {tn} be respectively the (Rh,r) transforms of {Sn}, {Sn_l}. Obtain tn in

terms of E;. The result is

n
t, = ) Fn’ktk+l, (3.21)
k=0
where
n
= .22
Fn,k vzk Cn,va+l,k+l’ (0 <k <n) (3.22)
and Cn v is given by (3.18) - (3.20), and where Dn v is the reciprocal matrix
b} ]

of C . Write
n,v

¢ c
G =cC (¥ - _Tn (0 <v <n) (3.23)
mvo L vl T ve1 Cntl,nel

and use the fact that

-1
1 n
D S S c D , (3.24)
n+l,k+1 cn+l,n+l vek n+l, v+l v+l k+1
to obtain from (3.22) that
j
F ,n-j Z n,n-u Dn-u+t ,n—j+1 (0 <j <n (3.25)

We will show that if 0 < h-r < Ub, and 0 < z <9%, then for sufficiently large n

Yy 2

and n < j < nZ , F is not bounded. This implies that the transformation

n,n—j
given in (3.21) is not regular, and consequently, when h-r e (0, Uh) (Rh ) £ T .

To prove this, we will show that for sufficiently large n and 2 < j < nZ , the terms of
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the sum (3.25) alternate in sign, and then we will show that the limit of Fn n-j is

unbounded.

The inversion formula of (3.17) gives

CJ""l,J' Cj+1,j+1 0 0 . 0
CJ'+2,J' cj+2,j+1 Cj+2’j+2 0 . 0
Cn.j . . . . c“’n_1
b, ;= (-
Cn,ncn-l,n—l“'cj,j (3.26)

Using (1.2) and (3.18) - (3.20), we have from (3.26) that

. D . .
lim (-DYTF nTwnj ey 2 (3.27)
e n w(h-r)
where w = Lhto . (3.28)
h-r
Next, we will show that when 1 <u < j < nz, Gn n-u < 0. This together with
’

(3.27) imply that the terms of the sum given in (3.25) alternate in sign for all
sufficiently large n uniformly in 2 <u < j < nZ. Using (3.18) and (3.19), we have
from (3.23) that

Cy,n-1 = sinth-r)o [£C0 ) - £(q I, (3.29)
where
sin(1+h-r)6n
f(@n) = m_—r)—en— . (3.30)

Differentiate, and use the mean value theorem to see that there is some

x in (Gn“,en) such that
sin(h—r)@n
Gn,n-l = [On— 0n+l] [sin(1+h-r)xcos(h-r)x-(1l+h-r)sinx] (3.31)
sin”(h-r)x

sin(h—r)en
- [On- On+1][sin(l+h-r)x - (l+h-r)sinx] (3.32)

C—a—
sin” (h-r)x

< - q—s, (3.33)
n
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where q is some positive constant.

Next, wusing (3.18) and (3.19), we have from (3.23) and (3.20) that

if 2 <u <j <nz, then

2
= ~4gin- s 9 - + e .
n,n-u 4sin” Oanos(n utrkl)e

. 2] _ c (he
sin” Oncos(n u+r’r1)0n sin(h r)On

STat-o6 (.39

. 2] _
sin” On+lcos(n u+r+2)0l_l+1

Observe that the quantity inside the square brackets of (3.34) is greater than

.2 . _
in-f A S W Oe“ Ié?“— - 1] > o0, (3.35)
sin” 1pp I sin(h—r)e“+l n+l “n+l

Using (3.20) and (3.35), we have from (3.34) that

G <0 2 <u <j <n°. (3.36)
n,n-u

This together with (3.33), imply that

. z
Gn,n—u <0 1 <u<j<n. (3.37)

Hence, it follows from (3.27) and (3.37) that the terms of the sum (3.25) alternate in

sign for sufficiently large n uniformly in 2 <u < j < nZ. Finally we will show that

1
when n 122 <] <nz, then

lim an,n-jl = - (3.38)
n+w
Using (3.18) - (3.20), and noting that
03 5
sin @ ~ 0 - 3y + (07); (0 »0), (3.39)
we have from (3.23) that
© (1+h-r) (1+2h-2r)
G - . (3.40)
n,n-1 4
24n
and from (3.34) that
G ~_1r3(u+h—r-l) (3.41)
n,n-u 4 ’ *

4n
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for sufficiently large n uniformly in 2 <u < j < nZ. Using (3.27), (3.40) and (3.41),
we have from (3.25) that

2
F - m [(_I)j—l [1+h-r](1+2h-2r]  j-1
n,n-j 2(h—r)n3 6
h| i -
+ 3 DI -3 ™Y (3.42)
u=2
2
=-——3 [A + B], say. (3.43)
2(h-r)n

Observe that for any x; (x # -1), we have

B = (j+h-r-1)k(x) - xk'(x), (with x instead of w), (3.44)
where

K(x) = 1 - x + x2= oot (-1)I72072 (3.45)
Observe that w + 1 = (h-r)_l. It follows from (3.44) and (3.45) (with w = x) that

B =- (-h-r) (-D37NI N gn - g (3.46)

Using this, it follows from (3.43) that for all sufficiently large n and 2 < j < nz,

2
F by " __“__1___5_ [(_1)j 1,3-1 [1 h+r]£l-2h+2r] + §(h-0)]. (3.47)
’ 2(h-r)n
Hence, when h-r € (0, H@); that is when w > 1, it follows from (3.47) that when
nl/22<j <nz,

lim IF

n->co

- -
n,n-j

and (3.38) is satisfied. This completes the proof of the first part. For the second

part, we use (3.17) to obtain E; in terms of tn. The result is

t .= H .t 3.48
n+l kzo n,k k’ ( )
where
n
Hn,k =v§k Cn+l,v+1Dv,k (0 <k <n), (3.49)

and where Cn K and Dn x are given in the proof of the first part. Using the identity
’ ’

C
- = - _ntl,n+l
cn,nCn+l,v+1 Cn+l,n+lcn,v] c Gn,v
n,n n,n

1
o | , (3.50)
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where Gn v is given by (3.23), we have from (3.24) and (3.49) that

c .
o o~- _Eél.ﬂ‘i % D - (3.51)
n,n-j n,n g=] MRTU TU,N7)

Observe that since Dn we have from (3.25) and (3.51) that

-u,n-j - T)n—u+l,n—j+1’
C
~ nElntl o B

n,n-j Cn n n,n-j
’

H

Using (3.18) and (3.47), it follows from (3.52) 1that when 0 < h-r <1y, H n-j is not
bounded for all sufficiently large n and and n 2 <j < n%. This implies that the
transformation given by (3.48) is not regular; that is when h-r e (0, 1)

(Rh r:) £ TI' This completes the proof of Theorem 3.

]
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