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ABSTRACT. By following the approach of Droinov, Vladimirov and Zavialov we investigate

the quasiasymptotic expansion of distributions and give Abelian type results for the or-

dinar asymptotic behaviour of the distributional Stieltjes transform of a distribution

with appropriate quasiasymptotic expansion.
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i. INTRODUCTION.

In the papers [9,10] authors followed the definition of the distributional Stieltjes

transform given in [7] which enabled them to use the strong theory of the space of tem-

pered distributions S’. In fact, they generalized slightly the definition of Lavoine and

’= {feMisra. Using the notion of the quasiasymptotic behaviour of distributions from S+
supp f [0,)}, introduced by Zavialov in [15], they obtained more general results than

in [6,7,2] for the asymptotic behaviour of the distributional Stieltjes transform at

and 0+. Let us notice that the notion of the quasiasymptotic behaviour of distributions

was studied by Droinov, Vladimiraov and Zavialov in several papers (see [13] and refer-

ences there) in which they obtained remarkable results in the quantum flela theory.

McClure and Wong [3,14] studied the asymptotic expansion of the generalized Stieltjes

transform of some classes of locally integrable functions characterized by their asymp-

totic expansions at and 0+

Our approach to the asymptotic expansion of the distributional Stieltjes transform

which we study in this paper is quite different from the approach given in [3,14].

In the first part of the paper we slightly extend and investigate the definition of

the quasiasymptotic expansion at of a distribution from S+ given in [4, p. 385]. Also,
+

we give the definition of the quasiasymptotic expansion at 0 of an element from
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This enables us to obtain, in the second part of the paper, the asymptotic expansions at

and at 0+ of the Stieltjes transforms of appropriate distributions from S+.
Domains in [14] and in this paper on which the Stieltjes transform is defined do not

contain each other. The examples given at the end of this paper show some advantages of

our approach in the case when a distribution belongs to the intersection of the mention-

ed domains.

2. NOTATION

As usually, , C, N, are the spaces of real, complex and natural numbers; NO=NU{0}.
The space of rapidly decreasing functions is denoted by S and by Sm, m NO, the com-

pletion of S under the norm

IIII m =sup{ (I + x2)m/21(i)(x)l; x R, i m}.

A positive continuous function L defined on (0,) is called slowly varying at (0+)
if for every a > 0

lim L(at)/L(t) (lim L(at)/L(t) i).
t t0+

We denote by Z (Z0+) the set of all slowly varying (in short s.v.) functions at (0+).
For the properties of s.v. functions we refer the reader to [11].

If L is an s.v. function at (0+), then ([ii]) for every e > 0 there is A > 0 so that
g- x

g
x
-g

X
g

X < L(x)< (. > L(x) > if x > A (0 < x < A ).

This property of L and the corresponding properties of S ([12, p. 93]) imply the
m

following assertion which we shall use in parts 6 and 7:

Let G Lloc, supp G [0,), = > -I and G(x) % x=L(x) as x (x 0+).
= for t > +I (2 i)Then G(kx)/(k L(k)) x+, k , in S

t #
(If t > =+I and G S[ then G(x/k)/((I/k)=L(I/k)) x k , in S

t

Recall for = > -i x H(x)x H is Heviside’s function. (The symbol % is related to

the ordinary asymptotic behaviour.

The following scale of distributions from S’ has been used in investigations of the

quasiasymptotic behaviour of distributions:

Hta/r(+l), > -1

f+l n
([12, p. 88])

D f=+n+l, --< -i’ =+n > -I

where D is the distributional derivative.

3. THE q.a.b. OF DISTRIBUTIONS

We shall repeat in this section some well-known facts about the quasiasymptotic be-

haviour fom [13,10].

Let f S+.’ It is said that f has the quasiasymptotic behaviour (in short q.a.b.) at

(0+) with the limit g # 0 with respect kL(k), L Z ((i/k)L(i/k), L Z0), , if
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lim < f(kt)/(kL(k)),#(t) > < g(t),(t) >, S

(lim < f(t/k)/((i/k))h(i/k)),(t) > < g(t),(t) >,
k

(3.1)

Let us notice that in [i0] we reformulate the definition of the q.a.b, at 0
+

from [13].

We need in the paper the following structural theorem (for the q.a.b, at see [13]

and for the q a b. at 0+ see [i0]):

Let f
q.a. 0+g at with respect to kL(k) ((i/k)L(I/k)).

Then there exist F Lfoe’ supp F [0,), C # 0 and m N0 m+ > -I, r (3.2)
such that f DmF, F(k) % Ckm+=L(k), k (F(I/k) % C(i/k)m+L(I/k), J

EXAMPLES

For -i, H(x_l)x qa.
-e+l

6(x) at with respect to k i;
Moreover, if f LI() supp f c [0,), ff C # 0 then f % C6 at with respect to k

-I

2. H(x-l)/x qa. 6 at with respect to k
-I

ink;

3. Any distribution with compact support has the q.a.b, at with respect to k
-m for

some m N;

1/x qa. H(x) at with respect to k
04. H(x-l)e I;

5 xm q4a. (_i)m-I (m-l)
6 at with respect to k-mlnk (m

(m-l)!
6. For -i, m No, (xinmx)+ qa. x at 0+ with respect to (I/k)inm(i/k);
7. For -n > -n-l, (x%inmx)+ qa. r(l+l)Dnfl+n+l at 0+ with respect (I/k)llnm(I/k);

(-I)n-I (n-l)
0+8. For n N, m No, (x-n inmx)+ qa

(m+l)(n-l)!
6 at with respect to

(i/k)-nlnm+l(i/k).

For the definition of distributions xm, m N, (xilnmx)+, -n > > -n-l, (x-nInmx)+,
n No, see [5, pp. 338, 339].

We remark that the q.a.b, at 0+ is a local property while the q.a.b, at is a global

property of an f S+.
Namely, it is proved in [13] that if f 0 in a neighbourhood of zero then for any

and L

lim f(x/k)((i/k)L(i/k)) 0 in S’.
k+

Clearly this does not hold for (see example 3.).

As it was shown in [9,10] the notion of q.a.b, is much more appropriate for the in-

vestigations of the Stieltjes transform. For example if f L I, supp f [0,) and

f I/x5 as x , this ordinar asymptotic does not imply the behaviour of its Stieltjes

transform. The behaviour of the transform is determined by the quasiasymptotic behaviour

of f (see example I.).

4. THE q.a.e. OF DISTRIBUTIONS

We extend slightly the definitions of the closed and open quasiasymptotic expansion,

in short the q.a.e, at , given in [4] and using the same idea we give the definition of
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the q.a.e, at 0+.
Let = e and L l (L 10). We put

H(t)L(t)t/r(=+l), = > -l,{ (4.1)(fL)+l Dn(fL)+n+l <- -I, +n > -I,

where n is the smallest natural number such that =+n > -1.
q.a.

Obviously, (fL)+l f+1 at (0+) with respect to kL(k) ((I/k)L(I/k)).

has the closed q.a.e, at (0+) of order (,L)DEFINITION I. We say that an f S+
E Z(R)((=,L) E Z0) and of lenght E, 0 =< < , with respect to k=-L0(k) ((I/k)+E

L0(i/k)) if f has the q.a.b, at (0+) with respect to k=L(k) ((i/k)=L(i/k))and if there

r.0+) 2exist . L Z (L
i

c
i

C, i ,N, N N i > 2 > > N (I1

_-< aN) and that f is of the form
N

_>ci(fLi)i+l(t) + h(t) (4.2)f(t)

i=l

such that

h(kt)
lim < ,(t) > 0, S (4.3)
x k-L0 k

h(t/k)
(lira < ,(t) > 0, S).
k 1/k)+L0(i/k)

Obviously, we shall assume that c. # 0 and that N > - (N < =+)"
I

Since the sum of two slowly varying functions is the slowly varying one we can and we

shall always assume that in the representation (4.2) =l > 2 > > N (I < =2 <

N). Namely, (fLj)8+ + (FLk)8+ (fLj+gk)8+I.
(fLj)81+l and (fLk)81+l have the same q.a.b, at (0+) iff 81 82 and Lj % Lk. So,

we have

PROPOSITION I. Let f e S+ satisfy conditions of Definition and assume that there

are two representations of f

N

f(t) I ci(fLi)i+l + h(t),

i=l
M

f(t) I i(fni)i+I + (t)
j=l

for which all the assumptions given above hold. Then M N,

{’i LN {’N’ I ’ LI L.

from Definition i:We shall use the following notation for the f S+
N

f qe. ci(fLi)i+I at (0+) of order (,L)

i=l

with respect to

(4.4)

EXAMPLES
H(x-1

9. We haw that
r

r=l r!x
uniformly converges to H(x-l)eI/x

I/x q4e" H(x) + ((inx)+)’ at of order (0,L--I)H(x-l)e

but

(4.5)
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oi
with respect to k Ink and

1/x qe(x) + ((Inx)+)’+ r! r
H(x-l)e 6(x)

r=2

-i
of the order (0,L =-i) with respect to k

q.e.
10. H(t-1)/t 6 + 6’ at of order (-I,L l) with respect to k 2

let n 2; then for j n-i

H(t-l)/tn q4e" 6+1 6’ + +
(-1)J-16(j-l)

(n-l) (n-2)1! (n-1)(j-l)!

at of order (-1.L i) with respect to k -j"

ink. Moreover,

H(t l)/tn q4e" (-I)n-2 (-l)n-16 (n-l)
6 +6’ + +6(n-2) +
(n-l) (n-2)l! (n-2)! (n-l)!

(4.6)

at of order (-1,L i) with respect to k-nlnk.

(4.7)

11.

H(l-x)xm q4e (_l)m_ (_l)m_ m-i

(m-l)!
(Inx)m) + ?-! "(x)

i=l

at 0
+

of order (-m, ln(I/k)) with respect to (i/k) -m.
Following [4] we define the open q.a.e.

DEFINITION 2. An f has the open q.a.e, at (0+) of order (,L) R Z) ((,L) e Rx

Z0) and of length s, 0 < s , iff for every , 0 < s, f has the closed q.a.e, of

order (=,L) and of length , with respect to k-L(k) ((I/k)=+L(I/k)).
By the same arguments as for Proposition one can prove the following proposi-

tion:

(4.9)

PROPOSITION 2. Let f have the open q.a.e, at of order (,L) and of length s and

let 0 & I < 2 s. Suppose that

N

f q4e" I a
i (fL)i i+1

at (0+) with respect to k=-1L1(k) ((I/k)+1L1(1/k))’
f q4e" y bi(fL at (0+

i i+I with respect to k-2L2(k) ((I/ (l/k)).k)+2L2
i=l

Then, M N and a
i bi, =i $i’ Li % i’ i i, N.

Let us note if f has the closed q.a.e, at of order (=,L) with respect to k=-L(k)
then for any s & , f has the open q.a.e, at of order [=,L) and of leQgth s. The simi-

lar conclusion holds for the point 0t as well.

Proposition 2 implies:

CORROLARY 3. Let f have the open q.a.e, at (0+) of order (,L) and of lenght s.

Then f may be asymptotically expanded into a series

f(x) q4e" Y ci(fLi)i+l at (0+)
i=l

where I > > =n > ( i < < n < ...), so tha for any 0 < s and L
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(f I ci(fLi)=i+l)(kx)/(k-L(k)) 0 in S’), k

((f- I ci(fL )ai+ )(x/k)/((l/k)a+L(l/k)) 0 in S’ k ,)
i

i;1

(Note that here c. can be equal to zero for i
i

5. THE DISTRIBUTIONAL STIELTJES TRANSFORM

There are several definitions of the Stieltjes transform of generalized functions. We

follow the definition given by Lavoine and Misra [7]. Some advantages of this definition

were mentioned in [8].

such that f J’(r) if there existThe space J’(r), r (-N), is a subspace of S+
m N and F Loc, supp F c [0,), such that

f DmF, (5.1)

i IF(t)l(t+)-r-m-ldt for > 0. (5.2)

0

The Stieltjes transform S r (-N), of an f J’(r) with the properties given
r

in (5.1) and (5.2) is a complex valued function S f defined by
r

(Srf)(z) (r+l)
m fF(t)(t+z)-r-m-ldt, z C (-,0]. (5.3)

0

(If p , t e N, (P)t p(p+l) (p+t-1), (P)O 1.)

It is proved in [7] that S f is a holomorphic function in C (-,0]. If f J’(r+m),
r

then Dmf J’(r) and

Sr(Dmf) (r+l)m(Sr+mf). (5.4)

One can show easily that

Dm(Srf) (-l)m(r+l)m(Sr+mf), f e J’(r), m N. (5.5)

6. ON THE BEHAVIOUR OF S f
r

Let f have the q.a.b, at (0+) with respect to k=L(k) ((I/k)L(i/k)). Then for some

m NO, m+= -i, and F Lloc’ supp F [0,), (3.2) holds. In the case of the q.a.b, at

this implies that f J’(r) for r > =, r E (-N). In the case of the q.a.b, at 0+,f
ought not belong to J’(r) for r =, r E (-N). If f J’(r) then F S’r+m+l; this

follows from [12, p. 93]. So, for p r+m+l =+m+l (2.1) and (2.2) imply:

F[kt)/k=+mLk))" Cf=+m+ in S’ k

.........P } (6.1)
(Let f J’(r); then Ft/k)/i/k)=+mLi/k)) Cf+m+ in S’ k

p

For a given z C (-,0] we denote by A(z) the set of all q(t) C such that

A(z) if there is an e e 0 < 2e < Rez I, such that

0 _-< D(t) --< i, q(t) for t > -e, n(t) 0 for t < -2e.

Clearly, for a given z C (-(R),0] and every n A(z)
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E t D(t)(t+z) -r-m-I for p < r+m+l. (6.2)

For the main results of this section we need the following assertion from [I0] ([9]):

Let f J’(r). We have (x > 0, t > 0), (Srf(tx) x(r+l)J(Sr+if)(xu)du,and if (Sr+if)(x) x-(r-)-iL(x) as x (x 0+) with r > , then (6.3)

(S f)(x) % ((r+l)l(r-))x-(r-)L(x) as x (x 0+).
r

Now, we are ready to prove:

THEOREM 4. Let f have the closed q.a.e, at of order (,L) and of length with

ke-L0(k) (see the notation in Definition i).respect to

Let r > , r (-N). Then

(i) f J’(r), (fLi)i+l J’(r), i N;

(ii) If we put Sr(fLi)i+l(x) si ,Li(x), i I,...,N, then for [i Li
F(r-

i
Sci,Li(X) si,Li(X) % x i-rL (x) x

N F(r+l i

F (r-ei rL xa_L
0xei .(x) 0( (x)) x .(iii) (Srf)(x)- ci F(r+l) I

i=l

PROOF. We shall prove the theorem by using the similar idea as in the proof of the

main theorem in [9].

Obviously, (i) follows from (3.2).

(ii) Let < r-l, x , L Z. Let m be the smallest element from NO such that

8+m > -i. Then

f8 +m+l
(t)L(t) N(t)

Sr(fL)B+l(X) (r+l)m0 (x+t)r+m+l
dt (r+l)

m < fS+m+l(t)L(t),(x+t)r+m+l >,

e A(x),
where

D(t)
< f+m+l(t)L(t), >

x+t r+m+

(6.4)

is observed as a pair from (S’r+m,Sr+m). Obviously this pair does not depend on D A(x).

Since r+m > 8+m+l, we have

Sr(fL)8+l(kX)/k-rL(k) (r+l)m < fS+m+l
(r+l) < f+m+l (kt)L(kt) D(kt)

>m k+mL(k) (x+t)r+m+l

(r+l)m < fs+m+l (kt)L(kt), D(t)

kS+mL(k) (x+t) r+m+l

If k , from (6.1) it follows

t)L(t)
,kB+m+l

D(t)

L(k)(x+t/k) r+m+l

Sr(fL)8+l(kX)/kS-rL(k) < fS+m+l(t),
(r+l)

m t+mdt F(r-8) x-r.r(8+m+l)J(x+t) r+m+l r(r+l)
o

.(t)

(x+t) r+m+l

On putting x we obtain that (ii) holds for all =. r-1. Let us suppose that r-l8<r.
1
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Then, by the same arguments given above, we have

F(r+l-8) xS-r-iL(x), x .(Sr+l(fU)8+l)(X) r(r+2)

Now by (6.3) we complete the proof of (ii).

(iii) We can assume that = < r-i because if r-I -<_ < r we have, as in (ii), to oh-

serve firstly Sr+l( fL)8+l and after that to use (6.3). Since

f I ci(fLi)ai+l e S’r+m’

(6.2) implies that in the sense of the dual pair (S’r+m,Sr+m) we have

N

{(Srf)(kx) [ c Sr(fhi )ai + 1) (kx)}/(ka--rLo(x))
i=l
N

L
0< {f(kt) ci(fui)(kt)}/(k- (k)) q(t)(x+t) -r-m-I

i=l

>+0ask+.

On putting x the assertion (iii) follows.

The similar assertion holds for the closed q.a.e, at 0+ but with more restrictive as-

sumptions.

THEOREM 5. Let f have the closed q.a.e, at 0+ of order (=,L) and of length with

(i/k)=+L0(i/k). If =+ < r and f J’(r) thenrespect to

r(r-=i) ai-rL (x) 0(xa+-rL0(x)) x O. (6 5)(Srf)(x) c
i
x ir(r+l)

The proof of this theorem is very similar to the proof of Theorem 4. We only notice

that we must observe firstly Sr+if and after that to use (6.3). Namely, from f J’(r) we

have that F e S’r+m+l and this implies that we have to observe the dual pair (Sm+l, Sr+m+l).
(D(t)(x+t)

-r-m-2
Sr+m+ as a function of t.)

7. THE UNIFORM BEHAVIOUR OF S f
r

Let F be a continuous function with supp F c [0,), r > = > -1 and F(x) % x=
Denote by h a > O, e > 0, a subset of C defined by

A {a + Rei#; R >- 0, -+e .< -< -e}.
ape

If z a + Reiv A and t e [0,) we have
a,E

r+l

’z + t’r+l > (l-s’)--(R + a + t) r+l.

as x +.

(7.1)

This follows from the elementary inequalities:

(a+t) 2 + 2(a+t)Rcosb + R2 >- (a+t) 2 2(a+t)Rcos + R2

(a+t) 2 + R2 + ((a+t) 2 + R2)cose (a+t+R)2cose >=

>= ((a+t)2 + R2)(1 + cose) 2((a+t)2 + R2)cos ((a+t)2 + R2)(I cose).

Assumptions on F imply

F(x) < C(I + xa), xO.
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For z A and suitable C
a,g

if F(t) ( 2 (r+l)/2 (1,t) ( P(r-)P(&+])( r-
0

(z+t)r+l dtl S C licolej (R+a+t)r+
at c +

r(r+l) J[)

So, we have proved the following lemma:
(7.2)

LEMMA 6. Let F satisfy the conditions given above. The function zr-=(S F)(z) is
r

bounded in A a 0, e 0.

We use this lemma for the proof of the following Theorem:

THEOREM 7. Let f satisfy the conditions of Theorem 4 and let all the slowly varying

functions in Theorem 4 are equal to i. Then

N
F(r-i) i-r) --r(i) Af,r(Z) ((Srf)(z) ci r(r+l)

z Iz
i=l

is a bounded analytic function in any A a > 0, e > 0;
a,E

(ii) Af,r(z) converges uniformly to zero in Aa,e when zl .
PROOF (i). It follows from the structural theorem (3.2) and Lemma 6.

(ii) It follows from (i) and Theorem 4 which enable us to use the Montel Theorem

[l,p. 53.

THEOREM 8. Let f satisfy the conditions of Theorem 5 and let all the slowly varying

functions in Theorem 5 be equal to i. Let
N

F(r_i i-rAf, (z) ((S f)(z) c z
r r i F(r+l

i=l

Then

)/z=+-r.

(i) Af,r(Z) is a bounded function in A0,eNB(0,R), e > 0, R > 0, where B(0,R)

{z;Izl < R};

(ii) Af,r(z) converges uniformly to zero in A0,e when Izl 0.

For the proof of this theorem we need:

LEMMA 9. Let F e Loc supp F [0,(R)), r > = > -I, F(x) x= 0+x and

flF(t)(z+t)-r-lldt0 < ’ z e A0,e N B(0,R). Then zr-=(SrF)(z) is bounded in A0,e
R>O.

s( o ,R),

PROOF. Take M O. For suitable C we have

M tif. F(t) !0
(z+t)r+l

dt] & dt +
Iz+tl r+l Iz+t[ r+1

(7.1) implies that

r-=f IF(t)Idt
9 r+l’ 9 < R.

M
(t+)

So, it follows that

r-=

Iz+tl r+M

is bounded, and we have to prove the same for

dt.
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M
r-= !i z+tt,z 17+I dt.

iOn putting z p.e 0 p R, -+e _-< =< -e we have

N NIp

[. t __i udu

r+llei + lr+
dt-

r-a 2
d o P O (u + 2ucose + i) (r+l)12

( udu
r- J u

2
p 2ucose + 1)

(r+l)/2

This implies the assertion.

PROOF OF THEOREM 8. (i) From the structural theorem (3.2) and Lemma 9 it follows that

Af,r(Z) is bounded in Ao,e n B(0,R).

(ii) Let f,r(Z) Af,r(i/z), z C (-,0].

The function f,r(), A0, n {m;ll I/R}, e 0 R > 0 is analytic and bounded

As well, we have

f,r(X) 0 as x .
This implies that the same assertions hold for Af, in the domain A N {m; Iml > I/R}

r a,g
a > 0, R 0. So by the Montel Theorem it follows that f,r(Z) converges uniformly to 0,

in h as zl Further on, this implies that f,ra, (z) converges uniformly to 0 in

A0, as Izl and so, that the assertion (ii) holds.

8. EXAMPLES

By examples 9., i0., Ii. and Theorems 4., 5. we have:

12. For r > 0 (r e R (-N))

(_F(r) -r(S (H(t-l)el/t))(x) xr Lr(r+l
-l-r

=0(x ), x+.

+ x
-l-r ( I ) l-r)lnx-1 +

r! (r-l)

13. For r > -I

-r-1 (r+l) -r-2(S (H(t-1)/tn))(x) x + xr (n-l) (n-2)

F(r+n)(-l)n-I -r-n x-n+ x o( inx), x .
r(r+l)(n-1)!

r(r+n-1)(-1)n-2
r(r+l)(n-2)!

-r-n+lx

14. For r -m

( -m-r (I I-m-r) x-m-r 0+(Sr(H(l-t)t)Xx)-(-l)m-l(m-l)! F(r+l)F(r+m) x inx + ijx 0( ), x

i=l

and have the compact support. It is proved in [4, p. 386] that f has15. Let f S+
the open q.a.e, at of order (,i) with -I and of length -, i.e. (with suitable

c. C)
1

f(t) q4e" [ cifai+l(t) at , e N
i
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Corollary 3 and Theorem 4 imply that for r > =, r R (-N)

F(r+i -r-ai_(Srf)(x) c_ x x .
r(r+l)

([4, p. 386])The similar assertion can be formulated for a periodic distribution from S+
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