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ABSTRACT. The object of the present paper is to show a result for functions belonging

to the class R(e) which is the subclass of close-to-convex functions in the unit disk

U.

KEY WORDS AND PHRASES. Close-to-convex of order e, class P(e), class R(e),

starlikeness bound.

1980 AMS SUBJECT CLASSIFICATION CODE. 30C45.

I. INTRODUCTION.

Let A denote the class of functions of the form

f(z) z + a z (I.I)
n

n=2

which are analytic in the unit disk U [z: zl < I}. A function f(z) belonging to

the class A is said to be close-to-convex of order if and only if it satisfies the

condition

Re{f’(z)} > e (1.2)

for some e (0 < I) and for z e U. We denote by P(a) the subclass of A

consisting of functions which are close-to-convex of order in the unit disk U.
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Further, let R(a) be the subclass of A consisting of all functions which satisfy the

condition

[f’(z)- 1[ < -a (1.3)

for soe (0 4 < 1) and for all z e U.

It is clear that R(a) c P(a) for 0 ( a < 1. Nunokawa, Fukul, Owa, Saltoh and

Seklng [I] have showed the starlikeness bound of functions in the class R(a). Also,

the starllkeness bound of functions belonging to the class P(a) was given by Fukul,

owa, Ogawa and Nunokawa [2].

2. MAIN RESULT.

In order to prove our main result, we have to recall here the following lemma due

to Lewandowski, Miller and Ziotkiewlcz [3].

LEMMA. Let 8 be real and 181 < /2. Let #(u,v) be a complex valued function

: D / C, D c C x C (C is the complex plane),

and irt u u + iu2, v v + iv 2. Suppose that the function (u,v) satisfies

(i) (u,v) is continuous in D;

(li) (ei8,0) D and Re{#(eI8,0)} > 0;

(lit) Re{#(lu2,vl)} 0 when (lu2,v I) e D and

2
2u2sln8 + u

2
Vl - 2cos8

i 2
Let p(z) e + plz + p2z + be regular in the unit disk U such that

(p(z),zp’(z)) e D for all z e U. If

Re{#(p(z),zp’ (z) )} > 0 (z e U),

then Re{p(z)} > 0 (z U).

Applying the above lemma, we derive

THEOREM. Let the function f(z) defined by (I.I) be in the class R(e).

Then

iB f(z)Re {e > 0,
z

(2.1)
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where

PROOF. It follows from f(z) e R(=) that

Re{e f(z)} > 0 (z E U) 2.3)

for IB] < /2 Sin-l(1 ). Defining the function p(z) by

iB f(z)
e p(z), (2.4)

z

iB
z
2we can see that p(z) e + PlZ + P2 + Is regular in U. Taking the

differentiations of boh sides in (2.4), we have

e f’(z) p(z) + zp’(z). (2.5)

It follows from (2.3) that

Re{eilSf’(z)} Re[p(z) + zp’(z)} > O. (2.6)

Setting

#(u,v) u + v (note that u p(z) and v zp’(z)), (2.7)

we see that

(i) #(u,v) is continuous in D C C;

(il) (ei8,O) e D and Re{#(eiS,0} cos8 > O;

(Ill) for all (iu2‘v t) D such that

Vl - 2cos8

2
2u2sln8 + u

2

Re[#(iu2,v )}= v

2
2u2sing + u

2
2cos

Therefore, the function #(u,v) defined by (2.7) satisfies the conditions in Lemma.
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Using Lemma, we have

Re[p(z)} Re {eI f(z) > 0
z

which completes the proof of Theorem.

Letting e 0 in Theorem, we have

COROLLARY. Let the function f(z) defined by (I.I) be in the class R(O).

Then

Re[. f(z------D} > 0 (z g U).z
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