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ABSTRACT. Let X be an abstract set and a lattice of subsets of X. The notion

of R being mildly normal or slightly normal Is investigated. Also, the general

Wallman space with an alternate topology is investigated, and for not necessarily

disjunctive, an analogue of the Wallman space is constructed.
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I. INTRODUCTION.

In the first part of this paper, we consider lattices which satisfy conditions

weaker than normality; more precisely mildly normal and slightly normal lattices. We

give examples of such lattices, and then investigate the preservation of these

properties under lattice extension and restriction.

Next, we investigate spaces which are related to the general Wallman space.

First, instead of considering the customary topology on the Wallman space, we

introduce another topology and show how topological properties reflect strongly to the

underlying lattice. Then we consider the case of a lattice which is not necessarily

disjunctive and construct an associated Wallman type space. This work generalizes

that of Liu (see Section 5).

We adhere to standard lattice terminology that can be found, for example, in [I],

[2], [3], [4|, [5]. However, in section 2, we summarize the principal lattice

concepts and notations that will be used throughout the paper for the convenience of

the reader. We then precede to the consideration of mildly normal and slightly normal

lattices in section 3, and then to analogues of the general Wallman space in sections

4 and 5. We flnally note that most of the results hold equally well for abstract

lattices.

2. DEFINITIONS AND NOTATIONS.

a) Let X be an abstract set and fl a lattice of subsets of X. We shall always

assume, without loss of generality for our purposes, that , X E . The set whose

general element L’ is the complement of an element L of is d.,ed by Q ’. ’
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said to be complement generated if f, for every L of there exists a squence

L’. is separating if for any two elements{Ln}n= in such that L =I,l=1 n
x v of X, there exists an element I, such that E L and y L. is T

2
if,

for any two elements x y of X, there exlst, A,B .2 such that x A’, y e B’

and A’ B’ . is said to be disjunctive if f, for every x E X and L

if x L then there exists an E i, such that x L and L O L . is regular if f,

for every x E X and every L E , if x L then there exists L I, L
2 fl such that

x LI,’ L CL and L OL2’ . is normal Iff, for any L|, L2g , if

LI, L and L L2’ . isLIfL2
then there exists L! L

2
such that LlC L2C

lindelof Iff, for every L ; A, if L then for a countable subcollecton

(La of {L}; i1 Li= ’" fl is compact tff, for everv Lcze , e A, if

L then for some finite subcol[ecttou (L of {L}; L . Next, consider

any two lattices ill’ 2 of subsets of X. fll is said to semi-separate or for

abbreviation ( s.s.q2) iff, fr every ^IL E QI and every L2E if Llfl L2= 0 then there

flL . I is said to separate if forexists LIE such that L2C L and L

any L
2, 2 , if L

2
flL

2 there exist LI, L such that L
2

L I, L2c L and

L! 0 . We denote by I :, qet whose general element is the intersecti,,

arbitrary subsets of fl. b) Let A h, ,.,y algebra of subsets of X. A measure on A is

defined to be a function, from A R such that is bounded and finitely

additive. The algebra of subsets of X generated by fl is denoted by A(.). If x X,
if x.A

then x is the measure concentrated at x so u..’.\) [0 if x#A
where A

The set whose general element is a measure on A() is denoted M(). Note that, since

every element of M(fl) is equal to the difference of nonnegatlve elements of M(),,

without loss of generality, we may work excl..’i voly with nonnegative elements of M(fl).

Let eM(fl), is ft- regular if for any A e A(); (A) sup{(L);LCA, L E fl}.

The set whose general element is an element of M()which is -regular is denoted

by MR(fl). An element E M(fl) is o-smooth on fl, if Lne fl, n 1,2,... and Ln then

(L 0. The set whose general element is an element of M(fl) w:[ t, i, o-smooth

on fl is denoted by M (). We say that is o-smooth on A(fl) if A A(fl), n 1,2...
o n

and A + t’ iCA 0. e set whose general element Is an element of M(fl) which
n

smooth on A(fl) is denoted by M(fl). Note that if MR(Q) then

M (fl).l() IR(fl) I () l(fl) l(fl) are the subsets of the corresponding M’s

consisting of the non-trlvlal zero-one valued measures. For U E M(fl), the support

of ,, S(,) E fl, u(L) u(X)}. L Is replete iff, whenever e I() then

S() # . A’premeasure on fl Is defined to a function from fl to {0,I} such that

() 0, (A) < (B) for every A CB where A,B and If (A) (B) then

(AB) I. H() denotes the set of all premeasures on G. c) an immediate

consequence of Zorn’s Lemma, we have, for every B I(), there exists an element

v IR() such that U v on or simply (B v(fl)). Also, for any two lattices

GI’G2 of subsets of X, if GIC , then for every E IR(G1 )’ there exists a

E IR() such that vIA(G and such that a v is unique if G1 separates .
Moreover, is normal iff, for I(), < I(G) v2(G)where I,2 IR( then
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I u2" R is regular iff, for any i,2 e l(fl); I B2(fl) then S(I) S(2). The

result xe IR(fl) Iff fl is disjunctive leads us to the Wallman Topology which is

obtained by taking the totality of all W(L) { e IR(fl); (L) for L e fl} as a

base for the closed sets on IR(fl). For a disjunctive fl, IR(fl) with the W(fl) of closed

sets is a compact T space and will be T
2

Iff fl is normal and is called the general

Wallman space associated with X and fl. Also, for a disjunctive fl and A,B

W(A) is a lattice with respect to union and intersection. Moreover,W(A’) (W(A))’,

W(A(R)) -A(W(fl)), W(A) -W(B) iff A B and W(A)c W(B) iff AcB. Now, we note that,

if is disjunctive so is W(R), and in addition to each E M(R), there exists a

E M(W(fl)) defined by (A) -(W(A)) for all A A(R) such that the map is

one-to-one and onto; moreover E MR(R) Iff E MR(W(R)).

3. ON NORMAL LATTICES.

In this section, we elaborate on the notion of a normal lattice, investigate

lattices which satisfy weaker conditions, and discuss their interrelations under the

extension and restriction properties. Throughout this section R’RI’ and will

denote lattices of subsets of the set X. Note that, for Lle R; i=1,2,3; O is normal

iff LICLUL, then L AIUBI; AL, BICL;; AI,BIE
THEOREM 3.1. Let R be normal, I(R) and G {L’s R’.LCL’, B()

then, G is a prime R’-filter.

PROOF. Clearly, G is an fl’- filter since , G, (LIOL2) and if LIE G;LICL
then LC Lthen^L^ G. In addition,^ If^ LI’vL G, UL and by the ^nrmallty of ,

L LIUL2 with (L) B(LI) + (2 then either (LI) or (L2) and so

either L G or Lv G. Thus, G is a prime ’ filter.

THEOREM 3.2. Suppose i C and RI separates . Then, I is normal iff is

normal.

PROOF. (i) Suppose fl is normal then by the separation. It [s clear that is

normal. (ii) Suppose R2
is normal. Let I(I )’ I’ 2(RI); I’ 2 (RI )"

Extend i,2, to I’ %2 e IR(R2) and to I(). Suppose there exists an

L2efl2; (f12) 1, but II(L2) O, then I(L) and s there exists L2 ; L2CL2
1(L2) 1. By the separation, there exists 1’ LI R’ L1DL2’ LIDL2" Consequently,

ll(L 1) but z(L1) then ll(LI) which is a contradiction. Therefore,

z 1() and similarly z (f12 ). Thus, by the normality of , 1 then

1 v2 and so O is normal.

DEFINITION 3.1. R is said to be mildly normal, if for all I (), there exists
o

a unique v IR(R); v(R).

DEFINITION 3.2. R is said to be almost countably compact, if for all

t Iz(n’), v : I (n).
o

DEFINITION 3.3. R is said to be prime replete, if for all lo(n), s() , +
THEOREM 3.3. If R is regular and prime replete, then R is mildly normal.

PROOF. If R is not mildly normal, then there exists Io(R), I IR(R) and

Vl(fl), < v2(fl). Then, there exists L1, L2 fl; L1OL2 . Vl(L1) v2(L2)
and Vl(L2) v2(L1) 0. But since is regular, S() S(Vl)C L and

S() S(v2)CL2. Then, S()C(LlfL2) and so S()= @ which is a contradiction

since is prime replete. Thus, R must be mildly normal.
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THEOREM 3.4. II L feB,fLat ;nd I.lndolof, Chea L miLdLy

PROOF. If l a ,t miLdLy ,,maL. then b the proof ,f mor

S()CL[OL2) . reover, , r, (p) S(vl) :;(v) wJh I(L)

h ), but ,() for air t uhtch ts a contrdXclon stnct, u c I ().

THeOReM 3.5. If l te alos co,,nbty ,.ompac snd nttdly normal, hen is normal.

PROOF. uppoe 2 it almo co,**tl-ably compact, and u *: I(). en v IR(’)
on ’ a so v < u(); v (). If g IR(O) ,nd u (), then v (

v I (fl). SInCe B Is mildly ,,-rmal the ret of the poot obvou.

THeOrEM 3.6. Suppose sljc 2 und ’l p,rCes , Then, f12 Is mtdLy nori If

01 is mildly normal.

PROOF. Suppose sl Xm tldly u,rml. t p t. Io(), U < Vl(t2), < (),

mildly nomo L.

DEFINITION 3.4. f22
t slid Lo 21 --co,in,ably unded, tf given gnl , n,

In ehe ne heorem, e will eee hen a partial converse of uhe eheorem 3.6

THEOREM 3,7. Suppos l separates s, and s t sl -counubly unded, hen

PROOF Suppose l2 is mildly nu,ttdl and 1 eparsem t. I (1) and

u (Vl(fll), < v2(l) whera Vl,V2 c tr(rt). Extend it to t c I(f12). By

v a,d v2 exend uniquely to l and 2 respectively, where l’ 2 IR(2)’ and

l’ 2(L2)’ Let Bn #’ n r ’ t,e ta l-countsbly bounded, there

S,ce 2 i, mildly normal. I 2 ,,d llenee v v2 o I S mildly normal.

DE?INTION 3.5. 9 I sald to be couutably paracompacc if whenever A

there exlsCs B c fl;AncB and ’; .
ZFINtTIUN 3 i ,ald to 1hLly no1, t for all 9 e I (9). here

exists unique v IR(): <
THEOM 3.8. [f ] iI regular atd tlndelof, then fl Is slightly not.

PROOF. Suppome tm not mltghtly tt, t-ml. Let c I(I’), N 1(), g ()
where l,2e IR(); v 2’ en S(U) ,. Let (L) Sap (L’);Ln; L

en, tm a prmeasure, i.e. (). H,,reover, S(t,) S() aince fl ta regular.

Also o(), and aince 0 ts lind,of, S() # , then S() which is a contradic-

tion. Thus, 2 mut li.ghtly nurmat.

ttghly cormal.

PROOF. N X (); i(22), v2(n2) her vt, v2e IR(12), then by
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iI 21 since is slightly normal and so I v2 by separatlon and hence f12 is

slightly normal.

LEMMA 3.1. If is complement generated, then is slightly normal.

PROOF. If is complement generated, then Io fl’ )C 1R(fl), that is, if Io( fl’

there exists a unique v IR(); (fl). Thus, is slightly normal.

In the nexf theorem, we will see when a partial converse of theorem 3.9 is true.

THEOREM 3.10. Suppose I separates f12" If f12 is mildly normal and countably

paracompact then fll is slightly normal.

PROOF. Let E Io(I’); I(I )’ 2(I);!’ 2 IR(I). Extend to

I(2). Consider Bn +’ BnE then BnC A’n +’ AnE I since 2 is countably

paracompact and I separates 2 therefore 2 is I -countably paracompact and

(Bn) (A) --(A) 0. Since E I(i), then la(2). Now extend

l,V2 to TI, T2 E IR(2) then i(), 2(2)bY separation and so I 2
since is mildly normal. Thus I 2 and so I is slightly normal.

REMARK 3.1. It is not difficult to give similar conditions (as in theorem 3.10)

to obtain the other partial converse of theorem 3.9.

4. ON SPACES RELATED TO THE GENERAL WALLMAN SPACE.

We recall from section 2 that for an arbitrary lattice R of subsets of

X, IR() with the topology W() of the closed set, is a compact T space. Also,

if is disjunctive and separating then X can be embedded in IR(). Moreover, if is

disjunctive, so is W(), and IR()with the topology W()is T
2

iff is normal. In

this section, we consider alternate topologies on IR().
THEOREM 4.1. Consider z W(’) for a base of closed sets W(L’);L’E P Then

IR() with the topology is T2.
PROOF. If B1 # 2:I’2 E IR() then there exists LI,L2 ;LIrL2 , I(LI

and I(L2) 0, 2(L2) and 2(LI) O. Therefore I W(LI )’ 2 W(LI and

2 E W(L2)’ I W(L2); W(LI) and W(L2) are open sets. Thus, W(LI)rW(L2) and

consequently, IR() with is T2.
DEFINITION 4.1. is said to be almost compact, if for all E (’), S()

THEOREM 4.2. The lattice W(’) is almost compact.

PROOF. Let % E IRW((’)’) IR(W()) then % ,
E IR() (section 2) and so

^ ) on W() and so IR()S() W(L)with (W(L))ffi B(L). Thus, W(L) E S(

with W(’) is almost compact.

REMARK 4.1. We note (i) S(k)= S()ffi {}. (li)If is disjunctive, it is then

clear that for any L E , L L’, LCL’; L e .
THEOREM 4.3. The sets of W() are clopen in the topology.

PROOF. Since W(L) is disjunctive then by remark 4.2 (li) for any L e ,
W(L) =r.W(L’), W(L)CW’(L ),L is closed in the -topology. But, W(L) is also

open in -topology since W(L) (W(L’)’). Thus, the sets of W()are closed in the

-topology.

THEOREM 4.4. IR( with the -topology is compact iff is an algebra.

PROOF. (i) Suppose IR()with is compact. Thus, W(’) is a compact lattice

and so is W(’). Let I(W(’)). Then S() on W(’), ; k E I().
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Let V e S(), V IR(n) then (W(L’)) iff (W(L’)) iff A(L’) I.

Now A(L’) I. Then (W(L’)) then v e W(L’) then v(L’) I. Thus, < (fl’) and

hence B A(L). But V e IR(L) then V- A. Thus and hence l(W(fl))

l(W(fl’)) IR(W(fl)). Thus, ’ [2]. (li) The converse is clear.

THEOREM 4.5. 6 W(fl) Iff fl is an algebra.

PROOF. (i) Since the sets W(fl) are clopen by Theorem 4.3 then W() e 6 and so

W() 6. Now, if 6 TW(.) then since W() is compact so is 6 and so is an

algebra by theorem 4.4. (ll) The converse is clear.

In the next theorem, we glve another equivalent condition for fl to be an algebra.

THEOREM 4.6. is an algebra iff W(fl’) is a disjunctive lattice in IR().
PROOF. (1) Suppose is an algebra, then IR()- l(fl). Let e IR(fl);

U W(L’), L e ft. Then u(L’) 0, (L) u((L’)’). L’ e and W(L’)NW((L’))’

$. Thus, W(’) is disjunctive. (li) Suppose W(’) is disjunctive. Let

u e I() then there exists a e IR(); ). For , there exists

L e , ,(L) 0, L) then v 4 W(L’). Hence, by disjunctlveness

e W()’, L e n and W(L)’W(L)’ W(L’ N L’) W(( U L)’). Hence,
A

LULffi X, L’OL’ and 8o L’CL, but since |(L) and W()’, (L) 0

which is a contradiction, since . Thus, IR() I(), and so is an algebra.

5. ON NON-DISJUNCTIVE LATTICES.

We next consider the case where is not necessarily disjunctive. We begin, by

introducing the notion of an -convergent measure and some related results and then

proceed to the construction of an analogue of the Wallman space.

DEFINITION 5.1. e I() is said to be -convergent if there exists an x X such

that x ( )"

THEOREM 5.1. is -convergent iff S() on ’, for all e I().

PROOF. (1) Suppose is f-convergent. Then there exists x e X; Ux u() and so

" x(n’)" Moreover x S(x)C S(,) on n’. Thus, S() on n’. (ll)

Suppose S() # on n’ for e I(). Let x e S() on ’. Then, B x(n’) and so

x ()" Thus is f-convergent.

THEOREM 5.2. Suppose "I 2()’ for all I’ 2 e I(). Then

a) If I is -convergent so is 2"
b) If ’ is regular and 2 is f-convergent then I is it-convergent.

PROOF. a) Suppose I is -convergent, then x UI() for some x, but

I 2() then Bx 2() and so 2 is -convergent. b) Suppose 2 is

f?-convergent, then x 2() for some x and so 2 x(’) and x e S(2) on ’
but I U2() then 2 I ’ and since ’ is regular x e S(2 S(BI on ’. Thus,

S(I) on ’ and so I is it-convergent.

THEOREM 5.3. Suppose ’ is T
2
and is f-convergent where u e I(). Then, there

exists a unique x e X: x (’)"

PROOF. If ’ is T
2
and if x#y then there exists L I, L

2 e ; x e LI,
y e L2; LIL2

and x(Ll) I, x(L2) I. Now, if x U(n)and y B()

then u(LI) u(L2) but LI0 L
2

which is a contradiction and so the desired

result is true.
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DEFiNITiON 5.2. ts said to be weakly compact if for all IR(), is

-convergent.

DEFINITION 5.3. is said to be almost compact if for any +: IR(’), S()
on .

THEOREM 5.4. is weakly compact iff ]’ Is almost compact.

PROOF. (i) Let IR( then since is weakly compact, there exlsts an x E X

such that x () and S() on ’. us, ’ ls almost compact. (li) Let

e IR() then S(B) on ’ since Is almost compact. Let x S() on ’then p (x(’), x (() and so is weakly compact.

Now, note that a topological space X is absolutely closed (generalized absolutely

closed) iff the lattice of open sets Is T2(To) and weakly compact. Next, let be a

lattice of subsets of X and define U() {UL L E }.

THEO 5.5. a) If l and 2 Is weakly compact, then [ is weakly compact.

b) Suppose l cU(l)and 2 seml-separates 2" en, if I Is weakly compact,

is weakly compact.

PROOF. a) Extend IR(I) to v IR(2). Since 2 is weakly compact, there

exists an x; Bx ( 2)" x ( (I and so $I is weakly compact, b) Let v e IR().
en since is.s2 E IR([ where is the restrlction of v to A(LI). us, there

exists an x X such that x (l )" Now, suppose L
2 and x(L2) then x g X

L ; then x is on some L] and so (L for some LX L2, but L
2

U LI I x
and moreover (LIe since x ([)’ but LIecL2 then v(L2) and so

x 92)" us, 2 is weakly compact.

REK 5. I. t X be a topological space and e the collection of open sets.

en, by eorem 5.4, e is weakly compact Iff F e’ is almost compact.

Now consider X. Suppose 9 is non-dlsjunctlve and define I {x: x E X} U

{ IR(): U Is not convergent} and W(A) { I; (A) I, A A()}. We also

assume is To, so x, y X and x y implles Bx # "THEOR 5.6. For A, B A(), we have: a) A B iff W(A) W(B), b) W(AU B)

W(A) U W(B), c) W(A O B) W(A) W(B), d) W(A’) (W(A))’, e) W(A()) A(W(9)).

PROOF. a) (i) If A B, then, clearly W(A)= W(B). (li) If A B, then say

A OB’ , let x e AOB’ then x(A0 B’) I; x I and so x(A) I, x(B) 0 which

implies that W(A), 4W(B)and W(A) W(B). b), c), d) and e) are not difficult

to show and are omitted.

Now consider e I() and define e I(W()) to be (W(A)) (A), A A().

en, one can easily note that Is I-I and onto from I() to I(()), and

moreover B IR() iff E (W()).
THEOM 5.7. W() Is weakly compact and T

o
PROOF. a)Let E IR(W()) then m IR(). If Is convergent then x ( ()

implies that x < (W()). Note that for A E A(),

I if x A

x(A) x(W(A)) =0 and x W(A) iff x(A) Thus
if x A x is the measure

concentrated at x and so is W()-convergent. If B is not convergent then
A A

S(U W(L) with u(W(L)) u(L), hence U E W(L), U e I, U e S(U) and U is the

measure concentrated at , and consequently W() is weakly compact, b) Let I’
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U2 I, l then there exists an L such that say, I(L) I, u2(L) 0.
^2

Therefore Ul W(L), U2 W(L’) and so W(L) Is To.
THEOREM 5.8. If U() then W() separates U(W()).

PROOF. Suppose (i) (U (La) O (W(L)) 0" Let A =(ULa) e a, B (L 8) e a.

Since a U() then (UW(Lo))cW(A) and (UW(LB) cW(B). If AnB I then L nL

for some , B- Let x e L 0L
B
then x and x e W(L )and x e W(L B) which

contradicts (i). us, A B 0, W(A)W(B) 0, and the desired result is now clear.

Now, we note that If U() then I with W() is generalized absolutely

eIed and t absolutely closed if is 2" u, tff we ensider X and

(a) and 2’ then I, 0 is an absolute elure X tnce ne can easily

obere that X (X).

REK. analogous construction can now be done for i o, o. Where

o {x: x e X} U{ e l(fl): Is not convergent} and (A) { e I O,

(A) I, A A() and one can show that () Is weakly replete. is weakly replete

O
if for any IR() g is convergent. We note that the constructions here

genraite the ork Lut [6].
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