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ABSTRACT. A monotone iterative technique for proving existence of a positive solution
pair (A,y) of y"(x) +x a(x)yu(x) =0, 0<x<1l, y0+) =y(1-) =0, up<-11is

shown. The method is computationally effective and an example is given.
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1. TINTRODUCTION.

In this paper a monotone 1iterative technique for finding a positive solution
pair (\,y) of
Y'x) + 2 alx) yMx) =0, 0 < x <1

y(0+)

y(1-) = 0, (1.1)
us<-1,

is shown. We require a(x) to be non-negative and continuous on [0,1] with xu—l a(x)
and (l-x)u-'l a(x) being bounded on (0,1). Under these conditions, a solution exists
and y'(0+) and y'(1-) are finite. This was shown by Taliaferro [1]; however the
methods in that paper were not coanstructive In nature. Development of an iterative
sequence which is proved to converge to a positive solution is our aim in this

papert. In other work the authors [2] have obtained results for u> - l. Negative
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exponent Emden-Fowler problems have some significant applications 1in permeable
catalysis and fluid mechanics (Luning and Perry [3], [4]).

2. THE MONOTONE ITERATION.

The iterative sequence 18 defined as follows: Let uo(x) = x,

(1-x)& 0<E<x
K(x,8) = (1-€)x x<E<1,
and 1
1200 = 3, [KGr,E) a(®) up y(6) dg n=1,2,... @.1
1
An =

1
- H
g (1-§) a(g) u (&) dt.

The conditions on a(x) guarantee the existence of un(x), n=1,2,3,..., On
0 < x <1 and that u;(l—) is finite for all n. Moreover, since K(x,E) is the Green's
function for u" = 0, u(0) = u(l) = 0, the sequences {un(x)}, {An} satisfy

wx) + A alxud (0 =0
un(0+) = un(l—) =0 (2.2)
u; O+) =1

The sequences {un(x)}, {An} are actually alternating monotone.

LEMMA. For n 3> 1, u2n—l(x) <u (x) < uzn(x) < u2n—2(x)’

2n+1

0 <x <2y An oz < Agni€ Popere

one value of x € (0,1) such that Mu;u(x) -u

Moreover, for any 0 <M < 1 there is at most

-H
k)
(2n-2,2n-1), (2n,2n-1), (2n-2,2n), or (2n+l,2n-1).

(x) = 0, where the pair (1,j) can be

'
Before proving the lemma, we note that the result implies that {un(l—)}:;'1 is a

bounded sequence.

PROOF OF THE LEMMA. First we compare U and u. We have

(g = up"(x) = Aalx) u) (x) > 0, 0 < x < 1, Cug=u))'(0) = (uy=u;)(0) = 0,

so that ug > u)s 0<x<1l, Let f y =M ¥ uo(x) - ul(x) where 0 <M < 1. Now

0,1("

" ] = H = ' = "l/u_
fO,l (x) CH (x) Al a(x) uO(x) >0, 0<x<1, fO,l(o) 0, fo,l (0) =M 1 <0.
Thus fo l(x) can cross the x axis at most once interior to (0,1). Since Yy > up, the
’
definition of Xk leads to AZ < Al'
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In a completely similar way it is shown that U > Uy, A3 < Xl’ and
fO 2(x) = M-l/uuo(x)—uz(x) has at most one zero interior to (0,1). For the induction
’

hypothesis we assume (UZn.u2n+1) (x) >0, 0<x<1, (uZn-u2n+2) (x) >0, 0 <x<1,

there is at most one x € (0,1) such that (M_l/uuzn—u2n+l) (x) = 0, and there 1is at
-1/u

most one x € (0,1) such that (M uzn-u2n+2)(x) = 0. This implies that

<A and A <A To show that (u x) >0, 0<x<1, we

2n+1 2n+3 © “2n+1”° 2n+2 Y2n+1

Aont2

proceed as follows

" = u - u
(U g o)) (X = Ay ga(x)ug D=2y Halxduy ) (0)

u u
RS TS LGOI MCOLPMIL Y

A
2n+2 -y -
[ vy, it |

2n+2/A2n+l <1 we conclude that (u2n+2-u2n+l) (x) >0, 0< x <1, Similarly it

~1/u
is shown that there is at most one x € (0,1) such that (M Uy 42 u2n+l) (x) 0.

Since A

One then proceeds in the same manner to consider

/

Therefore A2n+3 > X2n+2.
(U437 %) () (M

-y ) (0,
_ S
and (u2n+2 u2n+4) (x), M Uyne2 u2n+4) (x) along with the definition of Xn to order

u - _ -1/ _
U3 %ane) (95 (W 078y 13) (O, (M0 Uy 9 Y3

the A's. This completes the induction proof of the lemma.

v ~
Because 0 < A, < Ay .o <A1 < Ay, there exists 0 < A < X such that

A Since 0 < u () <u, () < uy (¥ <

1im Apn™ X, lim

n > 2n+1

n + =}2n+l =

uo(x), 0 <x <1, the sequences {u2n—1} and {uZn} are uniformly bounded monotone

sequences.

We can also conclude that the sequences are equicontinuous because {lun'(x)l} is

uniformly bounded. By Ascoli's lemma there exist functions u,u € C[0,1] such that

A
= u uniformly on

0 < ulx) < u(x), 0 < x< 1, and 1im = { and lim

n » ="2n-1 + Y21

[0,1]. Using the dominated convergence theorem and (2.1) we have

21 .
a(x) = A [ K(x,£)a(e)ub(e) dg,
0 (2.3)

—

W) = X [ R(x,8)a(e)aM(g) dk

o

or, equivalently,
@)+ 2axufx) =0, 0<x<1
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@'(x) + Aa(x)efx) =0, 0<x<1, (2.4)
u(0) = u(0) = 4(1) = u(1) = 0.

Now we have two possibilities. Either u(x) = 4(x) on (0,1) or G(x) < G(x) on
some subinterval of (0,1). If G = u then A = A and the pair (A,y) = (X,u) is a
solution to the problem (l.1). Otherwise we proceed as follows. Since U < 0 we have

—u" = aa(x)e” > da(x)et,
w(0) = (1) =0
Now let the constant C & (0,1) be chosen so that Cl-ui = X. Then we have

—(ca") =cC % a(x)u" < c 1a(x) @

¢ Wax (o)

2 a(x) (ca)

cu(0)=Cu(1)

0.
In this way we have a supersolution ¢ = 4 and a subsolution § = Ci for the problem
-y"(x) = xa(x) yMx), 0 < x <1,
y(0) = y(1) =0 (2.5)
w1 u-1
with ¢ > ¢ Since x  a(x) and (1-x) a(x) are bounded, the function
f(x,u)= Ma(x)u‘l has 3f/3u bounded, 0 < x < 1, P¥(x) < u < x). Therefore there
exists w > 0 such that

f(x,€) - £f(x,n) > -w(E-n)

for all x € [0,1] and €, n € [y,¢] with £ > n (where one sided limits are used at 0
and 1).

The foregoing conditions are sufficient for the iteration schemes (see Amann [5],

page 648).
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Vg ) v L) = ;\a(x) vlu((x) + wv, (x)

Yy (O = v, (0 = v (D) =0 (2.6)

Vo = % or Vo 1}

to converge to a minimal (if vy = P) or a miximal sclation (if vy % $) of Lhe problem

{
(2.5), the solution lying in [¢,¢].

Thus we have shown that a positive solution pair (\,y) exists for problem (l.1)
and is obtainable by monotone iteration., Moreover the eigenvalue A = ; is determined
by the iteration scheme in (2.1). If the function vy 1is not determined by the
iteration scheme (2.1) (that is if y #y)y is found by the application of the second
iterative scheme, (2.6). To implement the method numerically, special care musti be

taken in all calculations near the eundponints.

3. EXAMPLE.

Calculations were performed for Lhe problem

" 3 3 -2
y'(x) + A x(1-x)" y “(x) =0
y(0) = y(1) = 0.

The iterative method was applied using the integral formulation, using Simpson's rule
away from the endpoints. The sequences were alternating monotone and we found

AIO = 7.1737, All = 7.2213. Be cause max|ull—u10| < +0003 we used A = (Alo + Xll)/Z
and y = (u10 + ull)/Z; that 1is, we considered that the 1{terative sequences had
"pinched together”". The calculated solution was

A= 7.1975

y(x)

0
.0628
.1181
.2002

N WN+—~O X%

where y(x) is symmetric about x = 1/2. Uniqueness of solution follows from a result
of Taliaferro [1].

4. NOTE.

Our conditions on a(x) are wmore restrictive than those for a nonconstructive

existence result. TFor a(x) continuous on (0,1) a solution exists if and only

1
if [ t(1-t)a(t)dt < = [1].
0
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