
Internat. J. Math. & Math. Sci.
VOL. 13 NO. (1990) 159-164

159

ITERATIVE SOLUTION OF NEGATIVE EXPONENT EMDEN-FOWLER PROBLEMS

C.D. LUNING

Department of Mathematics
Sam Houston State University

IIunt sville, TX 77340

W.L. PERRY

Department of Mathematics
Texas A & M University

College Station, TX 77843

(Received June 21, 1988)

ABSTRACT. A monotone iterative technique for proving existence of a positive solution

pair (,y) of y"(x) +X a(x)y(x) 0, 0 < x < I, y(0+) y(l-) 0, u < -I is

shown. The method is computationally effective and an example is given.
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INTRODUCTION.

In this paper a monotone Iteratlve technique for finding a positive solution

pair (k,y) of

/’(x) + a(x) y(x) 0, 0 < x <

y(O+) y(1-) O, (I.I)

is shown. We require a(x) to be non-negative and continuous on [0,I] with x -I a(x)

and (l-x) -I a(x) being bounded on (0,1). Under these conditions, a solution exists

and y’(0+) and y’(l-) are finite. This was shown by Tallaferro [I]; however the

methods in that paper were not constructive in nature. Development o an iteratlve

sequence which is proved to converge to a positive solution is our aim in this

paper. In other work the authors [2] have obtained results for tJ >- I. Negative
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exponent Emden-Fowler problems have some significant applications in permeable

catalysis and fluid mechanics (Lunlng and Perry [3], [4]).

2. THE MONOTONE ITERATION.

The iteratlve sequence is defined as follows: Let Uo(X) x,

and

(1-x) 0 < x
K(x,) (1-)x x ( 1,

u (x) n K(x,) a()u () dn
0

n-I

f (I-O a() Un_
0

n-- 1,2 .... (2.1)

The conditions on a(x) guarantee the existence of u (x), n 1,2,3,..., on

0 < x < and that u’(l-) is finite for all n. Moreover, since K(x,) is the Green’s

function for u" O, u(O) u(1) O, the sequences {Un(X)} {n satisfy

" (x) 0u"(X)n + n a(X)Un-I

u (0+) Un(l-) 0 (2.2)
n

u’ (0+)
n

The sequences {Un(X)} {n are actually alternating monotone.

LEMMA. For n I, U2n_l(X) < U2n+l(X) < U2n(X) < UZn_Z(X)
0 < x < 2, 2n < 2n+2 < 2n+l < 2n-l" Moreover, for any 0 < M < there is at most

one value of x e (0,I) such that Muir(x) u B(x) O, where the pair (i,J) can be

(2n-2,2n-l), (2n,2n-l), (2n-2,2n), or (2n+l,2n-l).

,oBefore proving the lemnm, we note that the result implies that {u (l-)}n=
bounded sequence.

is a

PROOF OF THE LEMMA. First we compare u
0
and u I. We have

(u
0

ul)’’(x) )’la(x) u (x) > O, 0 < x < 1, (Uo-UI)’(0+)’= (Uo-UI)(0) O,

so that u
0 > Ul, 0 < x < I. Let fO, l(X) M- u0(x) Ul(X) where 0 < M < I. Now

fO,l ’’(x) -Ul"(x) )’I a(x) u((x) > O, 0 < x < 1, fO,l(O) O, fO,l’(O) M-1/-1 < O.

Thus fo (x) can cross the x axis at most once interior to (0,I). Since u
0 > Ul, the,I

definition of k leads to < I"
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In a completely similar way it is shown that u
0

> ’*2’ 3 < ll’ and

f0,2(x) M-l/Bu0(x)-u2(x) has at most one zero interior to (0,I). For the induction

hypothesis we assume (U2n-U2n+l) (x) > O, 0 < x < l, (U2n-U2n+2) () > 0, 0 < x < l,

there is at most one x (O,l) such that (M-I/u2n-u2n+l (x) O, and there is at

most one x (0,I) such that (M-I/U2n-U2n+?)(x)_ O. This implies that

12n+2 < 2n+! and 2n+3 < 12n+l" To show that (U2n+2-U2n+l)(X) > 0, 0 < x < I, we

proceed as follows

(u
2n+2-u 2n+ ’2n+ X2n+2a

12n+2
n+l

-n+la(x)Un(X)U2n+l (x)

2n-( x)-un+ (x)]
Since X2n+2/X2n+l < we conclude that (U2n+2-U2n+l) (x) > O, 0 < x < 1. Similarly it

is shown that there is at most one x e (0,1) such that (M-1/U2n+2-U2n+l) (x) O.

Therefore X2n+3 > )’2n+2" One then proceeds in the same manner to consider

(U2n+3-U2n+l) (x), (M-1/U2n+3-U2n+l) (x), (U2n+2-U2n+3) (x), (M-1/U2n+2-U2n+3) (x),

and (U2n+2-U2n+4) (x), (M-1/laU2n+2-U2n+4) (x) along with the definition of Xn to order

the ’s. This completes the induction proof of the lemma.

Because 0 < k2n < 12n+2 < A2n+l < A2n-l’ there exists 0 < A < A such that

llmn 2n , llmn -2n+l " Since 0 < U2n+l(X) < U2n(X) < U2n_2(x) <

Uo(X), 0 < x < I, the sequences {u2n_l} and {U2n} are uniformly bounded monotone

sequence s.

We can also conclude that the sequences are equicontinuous because {lu ’(x) i} is
n

uniformly bounded. By Ascoli’s lemma there exist functions 5, C[O,I] such that

0 < (x) 4 (x), 0 < x < I, and limn (R)U2n-I and llmn + -U2n -u uniformly on

[O,l]. Using the dominated convergence theorem and (2.1) we have

(x) f K(x,)a()51() d,
0 (2.3)

(x) X f K(x,)a()tl() d
0

or, equivalently,

a"(x) + a(x)[tl(x) O, 0 < x <
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"(x) + . a(x)(x) O, 0 < x < 1, (2.4)

G(o) G(o) fi(1) G(1) o.

Now we have two possibilities. Either (x) (x) on (0,I) or (x) < fi(x) on

some subinterval of (0,I). If then -- and the pair (k,y) -(,) is a

solution to the problem (I.I). Otherwise we proceed as follows. Since we have

l,(o) G(1) o

Now let the constant C e (0,1) be chosen so that CI- . Then we have

-(cG") c , a(x)G" < c 3, a(x) ,"

c-P(x) (c[,)"

, a(x) (cG)"

c,(o):cG() o.

In this way we have a supersolut[on and a subsolutlon C for the problem

-y"(x) a(x) yU(x), 0 < x < I,

y(O) y(1) 0 (2.5)

p-I
with @ ) . Since x a(x) and (l-x)-I a(x) are bounded, the function

f(x,u)= ka(x)u has @f/@u bounded, 0 < x < I, (x) < u < x). Therefore there

exists m > 0 such that

f(x,) f(x,n) > -m(-l)

for all x e [0,I] and , n e [,@] with > n (where one sided limits are used at 0

and I).

The foregoing conditions are sufficient for the iteration schemes (see Amann [5],

page 648).
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U(x) + Vk(X)-Vk+l(x) +Vk+l(x) i a(x) v
k

Vk+ 1(0) Vk+ l(0) Vk+ 1(l) 0 (2.6)

v
0

, or Vo

to converge to a minimal (if
0

@) or a ,taxi.at qol,tion (if v
0 ,) of the problem

(2,5), the solution lying in [,].

Thus we have shown t-hat positive solution pair (\,y) exists for problem (1.[)

and is obtainable by monotone iteration. Moreover the ei,envalue is determined

by the Iteratlo scheme in (?.I). If the functiou y s not determined by the

iteration scheme (2.[) (that is if )y is found by the appllca{ion of the second

i teratlve scheme, (2.6). To implement the method numerically, special care must be

taken in all calculations near the endpolnts.

3. EXAL LE.

Calculations were performed for the problem

y"() + k 3(i_x)3 2y- () =0

y(0) y(1) 0.

The iterative method was applied using the integral formulation, using Simpson’s rule

away from the endpoints. The sequences were alternating monotone and we found

"-- 7 2213 Because maxlu -u < .0003 we used A- (0 + )/2"- 7 173, Xll’10 10 kl
and y (ulO + uII)/2; that is, we considered that the Iterative sequences had

"pinched together". The calculated solution was

"- 7.1975

0 0

.2 I" I181
1.3 .2002

.4 .222

.5 .2292

where y(x) is symmetric about x I/. Vntqueness of solution follows from a result

of "raliaferro [I].

4. NOTE.

Our conditions on a(x) are more restrictive than those for a nonconstructive

existence res,It. For a(x) continuous e,n (0,I) a solution exists if and only

if f t(l-t)a(t)dt < -Ill.
0
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