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ABSTRACT: Let G be a compact Abelian group with character group X. Let S be a subset of X such that, for

some rcal-valued homomorphism on X, the set S N -1(]_, (X)]) is finite for all in X. Suppose that p is

measure in M(G) such that vanishes off of S, then p is absolutely continuous with respect to the Haar meas,I,’c

Oil G.
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1. INTRODUCTION.

Let G denote a compact Abelian group with character group X. Suppose that is a real-valued homomorphism on

X, and let denote the adjoint homomorphism of . Thus is the continuous homomorphism from R into G such

that the identity Xo(r) :exp((x)r) holds for all tin R, and all X in X. We denote by M(G) the linear spacc

of all complex-valued regular Borel measures on G. In the terminology of de Leew and Glicksberg [1], a measure p

in M(G) is called -analy$c if its Fourier transform vanishes on {X X: (X) < 0 }.

Suppose that S is a nonvoid subset of X. Let Ms(G denote the closed linear subspace of M(G) consisting

of the measures p with vanishing off of S. The set S will be called a B-set (B for Bochner) if there is a nonzero

homomorphism from X into R such that the set S-(]-x),(X)]) is finite for all X in X. The

homomorphism may depend on S, and may not be unique. For example, a sector with opening less than r in thc

lattice plane 7xl is a B-set. The first orthant in :w (the weak direct product of countably many copies of l) is

also a B-set. Once we have chosen a homomorphism , we will refer to S as a B-set with respect to the

homomorphism .
h theorem due to Bochner [2], on 1, the two-dimensional torus, asserts that if p M(T) is such that ]

vanishes off of a sector of opening less than r, then p is absolutely continuous. (The expression "absolutcly

continuous" will always mean absolutely continuous with respect to the Haar measure on the group in

consideration.) h generalization of this result is given in de Leew and Glicksberg [1], Theorem (3.4).

It is easy to construct B-sets in lxl that are contained in no sector with opening less than r. For

example, consider the set S:{(x,y)lxl: y>log(l+lxl)}. Using results from [1], we will show that the

conclusion of Bochner’s theorem holds for B-sets. We have the following theorem.

(1.1) THEOREM. Let S be a B-set in X. Suppose that p is in Ms(G), then/ is absolutely continuous.



188 N. ASMAR

Before proving the theorem we make a few observations. Suppose that S is B-set, with respect to

ho,,onorlhism /,. C,learly, there is character X0 in S such that g,(X0)_< ’(X) for all \ in S. Note that

translalc of S by an element of X is also a B-set with respect to the same homonorphism t/’. llence by shifting S

by -X 0, if necessary, we may suppose that ’(X) > 0 for all X in S. In this case, given a measure tt in Ms(G ),

consider the measure "p which is in MS_ x0(G). The set S- ’0 is a B-set, with respect to the homomorphis

/; and 0p is absolutely continuous if and only if p is.

If /J is in M(G), ve write Pa and Ps to denote its absolutely continuous part and its singular part

respectively.

(1.2) Lemma. Let S be a B-set in X. Suppose that tt is in Ms(G), then Pa and Ps are in Ms(G).
Proof. As observed before the lemma, we may suppose that V(S)C_[0,x[. Let 4) denote the adjoi,t

ho,omorphism of b, and let X1 be an arbitrary character in X\S, the complement of S in X. We want to sho

that

(1) its(Xt) ita(,)=0.

First, note that if S is finite then p tta, and the lemma is obviously true. So suppose for the rest. of the prool

that S is infinite. Let X in X be such that t/’(\’)< ’(’(). Let A {X(5 X: b() < ’,(),,.,) fqs,ti)pit. The set A

is either void or finite. Define the measure tr in M(G) by,

it(x)x,
xA

where the above sum is 0 if A is empty. We have

f (X) if . A;

0 if) A.

Hence # vanishes off of b’([k(X), oo[)fqS, which implies that a is b-analytic. It follows from [1], the Main

Theorem Proposition (2.3.2), and Theorem (5.1), that ha and hs vanish off of tb-t([tb(:),o[)glS. Since

#s as, it follows that s vanishes off of ,-1([b()2), oo[) fl S. Therefore, its(X) 0, and the lemma follows. []

Proof of Theorem (1.1). According to Lemma (1.2), it is enough to show that its(X)=0 for all ; in S. The proof

is by contradiction. Assume that fis(X0) # 0 for some X0 in S. Let X in X be such that tb(X) > k(X0). (Ilere

also we are assuming that S is infinite and V(S) C_ [0,0[.) Let A {X fi X: k(X) < k(X), and its(X) :/: 0}. Then

A is co,tained in k-(]-cv,(X)]) Iq S; and so A is finite and "0 is in A. Define the measure t, in M(G) by

, , i,(x)x.

We have X EA

f its(X) if xA;

0 if xA.
Thus/, vanishes off of -([(Xt), c[) t3S, and hence it is -analytic. Applying Proposition (5.1), [1], we see that

ks and ha vanish off of -([(x),[) S. Since Vs #s, it follows that #s vanishes off of -([V(X), [)S.
This is plainly a contradiction since (X0 < (X), and by mnption s(X0) # 0.

REFERENCES

1. de Leew, K., and I. Glicksberg. Quasi-lnvariance and analyticity of measures on compact groups. Acta.
Math. 103 1963, 179-205

2. Bochner, S. Boundary values of analytic flnctions in several variables and ahnost periodic functions. Ann. of
Math. 45 1944, 708-722


