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ABSTRACT. This paper considers the Bayestan point estimation of the scale parameter
for a two-parameter gamma life-testing model in presence of several outlier
observations in the data. The Bayesian analysis is carried out under the assumption

of squared error loss function and fixed or random shape parameter.
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1. INTRODUCTION.

Bayesian estimation problems taking into account possible extension of the
parameter set of a basic probability model to include contamination components, called
outliers, have been considered for some time. An excellent review for the Bayesian
approaches to outliers can be found in Barnett and Lewis [l].

In particular, the published 1literature dealing with the Bayesian point
estimation for the scale parameter of most well known life-testing models in presence
of several outlier observations in the data, is limited.

Sinha [2] seems to be the first to consider a fuller Bayesian analysis in the
exponential distribution when a single outlier observation may be present in the
data. Employing three possible families of prior dlstributions (inverted gamma,
uniform, noninformative), he provided the Bayes estimator for the scale parameter
under each of these priors.

Lingappaiah [3] generalizes the corresponding estimation problem of Sinha [2] by

considering the generalized gamma distribution when several outliers may be present in
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the data. Accordingly, he derived the Bayes estimator of the scale parameter for each
of che exponential, gamma and Weibull distributions. However, assuming fixed shape
parameter, he only employed one particular member of the inverted gamma prior family
for the scale parameter.

It should be mentioned here that in both of the above two papers, the authors
employed beta prior family to each parameter causing the contamination in the data.
Only, Sinha [2], briefly discussed the robustness of the posterior distribution of the
scale parameter when the parameter causing the contamination is fixed.

Also, Lingappaiah [4] studies the effect of a single outlier observation on the
Bayesian estimation of the parameters of normal life-testing distribution model.

In this paper, we consider the following point estimation problem. Suppose an
observed sample (xl Xy s eees xn) in such that n - k observations are from the gamma
family with p.d.f

f(x;0) NP - " exp[-x/o] x“_l, x>0, ou>0, (1.1)

r(uw)o
where u is the shape parameter, while k observations are from different families with
p.d.f's f(x;c/ar), 0 < a < I, r =1, 2, ..+, ke Assume that the parameters a's
are fixed and the set of k outliers is likely to be any set of k observations from the
sample. Under squared error loss function, the main problem here is to find a closed
form expression for the Bayes estimator of the scale parameter o when the shape
parameter u is either a fixed real number or a random variable, respectively. For
fixed shape parameter p the following prior families of distributions are considered:
(1) Inverted Gamma family

b ~(b+1)

g(o) = _I‘—?T:T expl-a/o]l o s> 0, a,b> 0, (1.2)

(This is a natural conjugate prior for o (Raiffa [5]));
(i1) Uniform family

1

glo) = N 81, al< o< ay, (1.3)
(iii) Exponential family

g(0) = X} expl-o/Al, o> 0, AD> 05 (1.4)
(iv) Noninformative family

g(o) = o-c, >0, c > 0. (1.5)

For random shape parameter u , we consider a mixture of discrete prior and a

conditional inverted gamma prior distribution on p and o, respectively, as follows:

Pr{u=uj} =Py j=12, ...,m, Yy >0, (1.6)
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\Y

b
u -
g(0|u=uj) =?(‘j"3—$—'exp{~uj/o} [ (vj+l), > 0, My Yy >0, (1.6a)

(This is a natural conjugate prior for (u,0) (Raiffa [5])).

Note that all the above priors were considered, partially or totally, in the work
of Sinha [2], Lingappaiah [3,4], Bhattacharya [6], Canavos and Tsokos [7], and Lwin
and Singh [8].

In the subsequent sections we will derive the posterior mean, i.e. the Bayes
estimator, and variance of the scale parameter o under each of the above priors,

respectively.

2. ESTIMATION OF ¢ WHEN p IS FIXED
To work out the Bayes estimator of o, note that the likelihood function can be

expressed as
f(xi s of ar)

n k
L)) I flx300 I —erf—o!
i 3 fGyE0

where the summation denotes the k-fold sums over the components of the vector i =
(il, 12, ooy ik) such that 1 < 11 + i2 Fooee # 1k < n. This 1likelihood function

must satisfy the following relation:

L(o) o ] exp[-w, (a)/0l a", 2.1)
i -_—

where a E(a.l, %Gy eees ck) and

k
vy (@) = nx - r-zl (l-ar)xir, (2.2)

where x is the sample mean.
Now, the likelihood function and the prior density of o are used to obtain the
posterior density. That is, according to Bayes' theorem the posterior density of o is

given by

_ L(o) g(o)
™ =T 7o) g(o) do 2.3

where Q is the parameter space containing o . Consequently, we can find the posterior
mean and variance for o.

Respectively considering the priors (1.2), (1.3), (1.4) and (1.5), the posterior
densities of o are as follows:

(1)

—(nutb+
G(nubl)’

n(o) = A_l(nu, 9,a,b) Iexp[-{a +w, (o)}l (2.4)
i —

where =
A, g,a,5) = Mnu + b) T [a +w, (@] W, (2.42)
i —



124 M.E. GHITANY

where

B(nu,al,az) =f Iwi(g)]_(n"_l)

Y*(np-1,w, (), np > 1, (2.5a)
for which
¥ (1,z) = Y(T,z/al) - Y(t,z/az), (2.5b)

and y(.,.) denotes the well-known incomplete gamma function (Andrews [9]);
(ii1)
(o) = ¢ (nu, @, 1) T expl-{o/2 + w (@/c}] o, (2.6)
i —_
where

C(ny,@,2) = A

—(np-1)/2 ~(np-1)/2
[wi(g)] K-

L 20w /YD), (2.62)

[F

and Kt(°) is the modified Bessel function of the third kind of order t (Andrews [9]);

(iv)
n(o) = D-l(nu,g,c) I exp[-w, (a) /ol o—(n"ﬂ:), 2.7)
i =

where =

~(nptc-1)

D(nu, a,c) = T(np + c-1) & ["1(-9)] , npedl. (2.7a)
i =

From the above posterior densities, the posterior means of o, also respectively,

are:
1) atw, (o)
* * 1= 15> (2.8
O—ZAi(g)—nw_T—, np+bdl, .8)
i —
where =
* - -
A (@ = a7 (nu,0,3,5) Mnutb)a + w ()" H; (2.8a)
(11) - -
* -1
g =B (nu,g,al,az) B(nu-lhg,al,az), nwl, (2.9)
(iii)
* -1
¢ =C (np,a,2) C(np-1,qa,}), (2.10)
(iv) w, (o)
* * 1=
o = E 91 () Az npt+cd2, (2.11)
where =
* -1 - +c~
D, (@ = 07 (au,ee) Tawre-1)lw, (@17 "D, (2.11a)
and the posterior variances of o are:
€9 [atw, (012
* 1
Var(o) = & A 2(_c:t) 7 , np+bd>2, (2.12)
i = (np+b-1)° (nypt+b-2)
ii
(1 B(ny, 0,a,,a,) B(nu-2,0,a,,a,) - Bz(nu—l,g,al,az)
Var(o) = , (2.13)

2
B (nu, a,a,,a,)
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provided nu > 2;

(111) C(ny,a,1) C(np-2,a,1) - Cz(nu - 1,a,})
Var(o) = 3 ) (2.14)
C"(nu,a, A)
(1v) w2 (a)
Var(o) = ¢ D:(_a) ; np- ¢ > 3. (2.15)

i = (nyu+c-2)" (nu+c-3)

3. ESTIMATION OF o WHEN u IS A RANDOM VARIABLE

When both u and o are random variables having the mixture prior distributions
given by (1.6) and (l.6a), the likelihood function in this case must satisfy the
following relation:

u~l
Zexp[~w ()/o]l o TH, (3.1)

L(y,0) &

(w1

where u = ]l;lgl xi
of uis given by

. This implies that the marginal posterior probability distribution

p; ()
j(a) 1= ya2,..0m (3.2)
Tg=1Pg (@)
where
u,~1 TI(nu,+ v,)
Py =pyud I T (@ 41T ), (3.3)
3 3 My 1 L
j —
Also, the conditional posterior density of o given u-uj is given by
-1 -(np +v +l)
h(o'u=uj)=Q (g,uj,vj) I expl-{w (G)"‘Uj Yol 0 73 (3.4)
where
- =(ny,+v,)
Qav gy vy) = Tlnug+vy) 1): [wi(g) MR AR B I (3.4a)

Now, the product of (3.2) and (3.4) yields the joint posterior distribution of

wand o . The (unconditional) posterior mean of ¢ is of the form

* m wi(u) + i

o =; jfl Ql’j(g) nuj+ vj-l , nuj+ vj> 1, (3.5)
where

0%y 3@ =2y (@) QT up, vy Tawy + v e (@) + w17, (use)
provided nuj +vj>1 for all j = 1,2, ..., m; and the posterior variance is
LIS lw, (o) + uj]2
Var(o) =L I Q (o (3.6)
1ogm AT

(nuj+ vj-l) (nuj+v 2)



126 M.E. GHITANY

provided nuj+vj>2 for all j=1,2, ...,m.

4, HOMOGENEOUS CASE WHEN p IS FIXED

In the case of simple random sample from a complete life test, the posterior
mean, and variance of o can be derived from those in section 2 by letting ur=1, for
allr = 1,2, ...,k.

Respectively considering the priors (1.2), (1.3), (1.4) and (1.5), the posterior

means of o, in the homogeneous case, are:

(i) _
* o+ nx
o = n ¥ bl np+b>1, (4.1)
where x 1is the sample mean;
(ii) —
* - —
o = Y*(np - 2, ﬂf) nx, nu > 2, (4.2)
Y*(nu - 1, nx)
(iii)
% nu 2( 2[(nx /2] / 1/2
g = / [h ] ) (4.3)
(iv) nu l( 2[nx /1)
* nx
g = s np+c > 2, (4.4)
np+c-2

and the posterior variances are:

(1) _2
Var(g) = (a + mz:) . nu +b > 2, (4.5)
(np+b-1) (np+b-2)
(i1)
Var(o) = Y*(nyu-1, nx) Y*(nu-3 nx) - Y* (np-2,nx) (n ) ap > 3 (4.6)
Y* (nu -1, nx)
(111)
1(z[nx/u”z @ty -k erment?
Var(o) = nu 172 nx, (4.7)
Ko 2(2[nx/>.] )
(iv) 2
(nx)
Var(o) = np + ¢ > 3. (4.8)

’
(nu + c-2)2 (nu + c-3)

The above results agree with Bhattacharya [6], Canavos and Tsokos [7], and Lwin
and Singh [8].

5. HOMOGENEOUS CASE WHEN p IS A RANDOM VARIABLE

When u and o have the mixture distribution given by (1.6) and (l.6a), the
posterior mean of o in this case is
nx + u

| 3‘ nuj+ "j_ T nuj+ \Jj) 1, (5.1)
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where p!
o =;m - j=1,2,000,m (5.1a)
s=1Ps
with uj—l I‘(nuj + Yj)
P} =P u - — s (5.1b)
] T (uj) (ux + nuj) i
and the posterlor variance of o takes the form
— 2
n, (nx + u,)
Var(o) =1 p % 2*1 , nuj+ vy > 2. (5.2)
j=1 3 (nu+ v =D (nu+v;-2) :

These results agree with Lwin and Singh (8], and Martz and Waller [10].

ACKNOWLEDGEMENT. 1 would 1like to express my thanks to L. Ringuette and the
referee for thelr valuable comments and suggestions for improving the presentation of

this paper.
REFERENCES

1. BARNETT, V. and LEWIS, T., Outliers in Statistical Data, Second Edition, John
Wiley & Sons, 1978.

2. SINHA, S.K., Life Testing and Reliability Estimation for Non-Homogeneous Data -
a Bayesian Approach, Comm. Statist. A-Theory Methods 2(3) (1973) 235-243,

3. LINGAPPAIAH, G.S., Effect of Outliers of the Estimation of Parameters, Metrika
23(1976) 27-30.

4, LINGAPPAIAH, G.S., Problem of Estimation when the Outliers are Present,
Trabajos. Estadist. Investigacion Oper. 30(3)(1979) 71-80.

5. RAIFFA, H., Decision Analysis, MA:Addison-Wesley, 1968.

6. BHATTACHARYA, S.K., Bayesian Approach to Life Testing and Reliability
Estimation, J. Amer. Statist. Assoc. 26(1976) 48-62,

7. CANAVOS, G.C. and TSOKOS, C.P., A Study of an Ordinary and Empirical Bayes
Approach to Reliability Estimation 1in the Gamma Life Testing Model,
Proceedings 1971 Annual Reliability and Maintainability Symposium, (1971),
343-349.

8. LWIN, T. and SINGH, N., Bayesian Analysis of the Gamma Model in Reliability
Estimation, IEEE Trans. Reliability R-23(5), (1974), 314-319.

9. ANDREWS, L.C., Special Functions for Engineers and Applied Mathematicians,
Macmillan Publishing Company, 1985.

10. MARTZ, H.F. and WALLER, R.A., Bayesian Reliability Analysis, John Wiley & Sons,
1982,




